cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192856 Number of matchings in the n-sun graph.

Original entry on oeis.org

1, 3, 8, 27, 100, 393, 1624, 7017, 31558, 147177, 709592, 3527769, 18045428, 94797147, 510594056, 2815698483, 15877236898, 91442860467, 537363872008, 3219075448251, 19641501806932, 121974079707225, 770381455577048, 4945495555291017, 32249369951426822
Offset: 0

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Extended to a(0)-a(2) using the sum/recurrence. - Eric W. Weisstein, Oct 03 2017

Crossrefs

Cf. A000085.

Programs

  • Mathematica
    Table[Sum[(2 j - 1)!! Binomial[n, 2 j], {j, 0, n/2}] + 2 Sum[n Binomial[2 n - k - 1, k - 1] Sum[(2 j - 1)!! Binomial[n - k, 2 j], {j, 0, (n - k)/2}]/k, {k, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 06 2016 *)
    Join[{1}, RecurrenceTable[{(n - 3) a[n] == 3 (n - 3) a[n - 1] + (n^2 - 4 n
    + 5) a[n - 2] - 3 (n - 1) a[n - 3] + (n - 1) a[n - 4], a[1]==3, a[2]==8, a[3]==27, a[4] == 100}, a, {n, 1, 20}]] (* Eric W. Weisstein, Oct 03 2017, amended by Georg Fischer, Dec 05 2019 *)

Formula

a(n) = A000085(n) + 2*(Sum_{ k=1..n } n * binomial(2*n-k-1, k-1) * A000085(n-k) / k). - Andrew Howroyd, Feb 28 2016, corrected by Vaclav Kotesovec, Mar 06 2016
Recurrence (for n>=7): (n-3)*a(n) = 3*(n-3)*a(n-1) + (n^2 - 4*n + 5)*a(n-2) - 3*(n-1)*a(n-3) + (n-1)*a(n-4). - Vaclav Kotesovec, Mar 06 2016
a(n) ~ exp(3*sqrt(n) - n/2 - 13/4) * n^(n/2) / sqrt(2) * (1 + 39/(8*sqrt(n))). - Vaclav Kotesovec, Mar 06 2016

Extensions

a(7)-a(20) from Andrew Howroyd, Feb 28 2016
a(0)-a(2) from Eric W. Weisstein, Oct 03 2017