cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A234627 Numbers of undirected cycles in the n-sun graph.

Original entry on oeis.org

1, 3, 11, 44, 198, 1036, 6346, 45019, 364039, 3306553, 33328389, 369132782, 4456043300, 58230679722, 818965960156, 12334276322245, 198059886271741, 3377876368962559, 60978094460613103, 1161619710523459392
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Comments

Extended to n=1 and 2 using the closed-form sum. - Eric W. Weisstein, May 04 2017

Crossrefs

Programs

  • Mathematica
    Table[(2 - Binomial[n + 1, 2] + Sum[(k - 1)! (Binomial[n, k] + Sum[n 2^j Binomial[n - j - i - 1, j - 1] Binomial[i + j - 1, i] Binomial[n - 2 j - i, k - j]/j, {j, k}, {i, 0, n - j - k}]), {k, n}])/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = (2 - binomial(n+1, 2) + sum(k=1, n, (k-1)! * (binomial(n, k) + sum(j=1, k, sum(i=0, n-j-k, n*(2^j)*binomial(n-j-i-1, j-1)*binomial(i+j-1, i)*binomial(n-2*j-i, k-j)/j)))))/2; \\ after formula; Michel Marcus, Mar 06 2016

Formula

a(n) = (1/2) * (2 - binomial(n+1, 2) + Sum_{k=1..n} (k-1)! * (binomial(n, k) + Sum_{j=1..k} Sum_{i=0..n-j-k} n*(2^j)*binomial(n-j-i-1, j-1)*binomial(i+j-1, i)*binomial(n-2*j-i, k-j)/j) ). - Andrew Howroyd, Mar 05 2016
a(n) ~ exp(3)/2 * (n-1)!. - Vaclav Kotesovec, Mar 06 2016

Extensions

a(12)-a(14) from Eric W. Weisstein, Apr 09 2014
a(15)-a(20) from Andrew Howroyd, Mar 05 2016

A290933 Number of edge covers in the n-sun graph.

Original entry on oeis.org

198, 4900, 240312, 23395376, 4531118784, 1749027373184, 1347335578414080, 2073100143249356800, 6374782039282565480448, 39187907355886437009522688, 481684681120059363288611291136, 11839809344351753924631214042382336, 582001612807237989283840810619309654016
Offset: 3

Views

Author

Andrew Howroyd, Aug 14 2017

Keywords

Crossrefs

Extensions

a(8) onwards from Andrew Howroyd, Dec 12 2024

A297478 Number of maximal matchings in the n-sun graph.

Original entry on oeis.org

11, 33, 102, 344, 1241, 4719, 18785, 77917, 335502, 1495094, 6877587, 32587137, 158736257, 793609535, 4066342542, 21325689560, 114340142239, 626087871897, 3497839239743, 19921238359695, 115568831686398, 682428323156306, 4098963089083577, 25027772430177051
Offset: 3

Views

Author

Eric W. Weisstein, Dec 30 2017

Keywords

Crossrefs

Cf. A192856.

Programs

  • PARI
    a(n)={sum(k=0, n\2, n*(binomial(n-2+2*k, 4*k+1) + 2*binomial(n+2*k, 4*k)/(n+2*k))*(2*k)!/(2^k*k!) )} \\ Andrew Howroyd, Jun 14 2025

Formula

a(n) = Sum_{k=0..floor(n/2)} n * (binomial(n-2+2*k, 4*k+1) + 2*binomial(n+2*k, 4*k)/(n+2*k)) * (2*k)! / (2^k*k!). - Andrew Howroyd, Jun 14 2025

Extensions

a(14)-a(18) from Pontus von Brömssen, Dec 24 2022
a(19) from Eric W. Weisstein, Jul 21 2024
a(20) from Eric W. Weisstein, Aug 17 2024
a(21) onwards from Andrew Howroyd, Jun 14 2025
Showing 1-3 of 3 results.