A192873 Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) given in Comments.
0, 1, 2, 7, 18, 49, 128, 337, 882, 2311, 6050, 15841, 41472, 108577, 284258, 744199, 1948338, 5100817, 13354112, 34961521, 91530450, 239629831, 627359042, 1642447297, 4299982848, 11257501249, 29472520898, 77160061447, 202007663442, 528862928881, 1384581123200
Offset: 0
Examples
The coefficients of all the polynomials p(n,x) are Fibonacci numbers (A000045). The first 6 and their reductions: p(0,x) = 1 -> 1 p(1,x) = x -> x p(2,x) = 1 +2*x^2 -> 3 +2*x p(3,x) = 1 +x +3*x^3 -> 4 +7*x p(4,x) = 1 +x +2*x^2 +5*x^4 -> 13 +18*x p(5,x) = 1 +x +2*x^2 +3*x^3 +8*x^5 -> 30 +49*x G.f. = x + 2*x^2 + 7*x^3 + 18*x^4 + 49*x^5 + 128*x^6 + 337*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
Programs
-
GAP
a:=[0,1,2,7];; for n in [5..40] do a[n]:=3*a[n-1]-3*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 07 2019
-
Magma
I:=[0,1,2,7]; [n le 4 select I[n] else 3*Self(n-1) - 3*Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 07 2019
-
Maple
seq(coeff(series(x*(x^2-x+1)/((1-x)*(1+x)*(x^2-3*x+1)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Jan 08 2019
-
Mathematica
(See A192872.) a[ n_] := SeriesCoefficient[ x * (1 - x + x^2) / ((1 - x^2) * (1 - 3*x + x^2)), {x, 0, Abs @ n}]; (* Michael Somos, Apr 08 2014 *) LinearRecurrence[{3,0,-3,1}, {0,1,2,7}, 40] (* G. C. Greubel, Jan 07 2019 *)
-
PARI
concat(0, Vec(-x*(x^2-x+1)/((x-1)*(x+1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Apr 01 2014
-
Sage
(x*(x^2-x+1)/((1-x^2)*(x^2-3*x+1))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 07 2019
Formula
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
G.f.: x*(x^2-x+1) / ((1-x)*(1+x)*(x^2-3*x+1)). - Colin Barker, Apr 01 2014
a(n) = (1/10) * (4L(2*n) - 3*(-1)^n - 5), with L(n) the Lucas numbers (A000032). - Ralf Stephan, Apr 06 2014
a(-n) = a(n) for all n in Z. - Michael Somos, Apr 08 2014
Extensions
More terms from Colin Barker, Apr 01 2014
Comments