cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192876 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

1, 1, 4, 9, 31, 94, 309, 989, 3212, 10373, 33595, 108670, 351729, 1138113, 3683172, 11918737, 38570247, 124815294, 403911805, 1307084405, 4229816636, 13687969901, 44295207939, 143342292894, 463865421721, 1501100008249
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.

Crossrefs

Programs

  • GAP
    a:=[1,1,4,9,31];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] - 5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
    
  • Maple
    seq(coeff(series((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Jan 08 2019
  • Mathematica
    q = x^2; s = x + 1; z = 26;
    p[0, x_] := 1; p[1, x_] := x + 1;
    p[n_, x_] := p[n - 1, x]*x + 2*p[n - 2, x]*x^2 + 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]  (* A192876 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]  (* A192877 *)
    FindLinearRecurrence[u0]
    FindLinearRecurrence[u1]
    LinearRecurrence[{2,6,-5,-6,4},{1,1,4,9,31},26] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2) )) \\ G. C. Greubel, Jan 08 2019
    
  • Sage
    ((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    

Formula

a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: (1-x-4*x^2) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014