A192876 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.
1, 1, 4, 9, 31, 94, 309, 989, 3212, 10373, 33595, 108670, 351729, 1138113, 3683172, 11918737, 38570247, 124815294, 403911805, 1307084405, 4229816636, 13687969901, 44295207939, 143342292894, 463865421721, 1501100008249
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,6,-5,-6,4).
Programs
-
GAP
a:=[1,1,4,9,31];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] - 5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019 -
Maple
seq(coeff(series((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Jan 08 2019
-
Mathematica
q = x^2; s = x + 1; z = 26; p[0, x_] := 1; p[1, x_] := x + 1; p[n_, x_] := p[n - 1, x]*x + 2*p[n - 2, x]*x^2 + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192876 *) u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192877 *) FindLinearRecurrence[u0] FindLinearRecurrence[u1] LinearRecurrence[{2,6,-5,-6,4},{1,1,4,9,31},26] (* Ray Chandler, Aug 02 2015 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2) )) \\ G. C. Greubel, Jan 08 2019
-
Sage
((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
Formula
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: (1-x-4*x^2) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014
Comments