A192879 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.
0, 1, 4, 10, 27, 70, 184, 481, 1260, 3298, 8635, 22606, 59184, 154945, 405652, 1062010, 2780379, 7279126, 19057000, 49891873, 130618620, 341963986, 895273339, 2343856030, 6136294752, 16065028225, 42058789924, 110111341546, 288275234715, 754714362598
Offset: 0
Examples
The first six polynomials and reductions: p(0,x) = 3 -> 3 p(1,x) = x -> x p(2,x) = 4*x^2 -> 4+4*x p(3,x) = 5*x^3 -> 5+10*x p(4,x) = 9*x^4 -> 18+27*x p(5,x) = 14*x^5 -> 42+27*x In general, p(n,x) = (A104449(n))*x^n -> A192878(n) + A192879(n)*x.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
GAP
a:=[0,1,4];; for n in [4..40] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 07 2019
-
Magma
I:=[0,1,4]; [n le 3 select I[n] else 2*Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 07 2019
-
Maple
with(combinat); seq( fibonacci(2*n) + fibonacci(n)*fibonacci(n-1), n=0..40); # G. C. Greubel, Feb 13 2020
-
Mathematica
(See A192878.) LinearRecurrence[{2,2,-1}, {0,1,4}, 30] (* G. C. Greubel, Jan 07 2019 *) a[n_] := a[n] = 2*a[n-1]+2*a[n - 2]-a[n-3]; a[0] = 0; a[1]=1; a[2]=4; Table[a[n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *) Table[Fibonacci[n]*Fibonacci[n-1]+Fibonacci[2n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *)
-
PARI
a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
-
PARI
concat(0, Vec(x*(1+2*x)/((1+x)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Sep 29 2016
-
Sage
(x*(1+2*x)/((1+x)*(1-3*x+x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 07 2019
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), with a(0) = 0, a(1) = 1, a(2) = 4.
G.f.: x * (1+2*x) / ((1+x) * (1-3*x+x^2)). - Colin Barker, Jun 18 2012
a(n) = (2^(-1-n) * ((-1)^n*2^(1+n) + (3+sqrt(5))^n * (-1+3*sqrt(5)) - (3-sqrt(5))^n * (1+3*sqrt(5))))/5. - Colin Barker, Sep 29 2016
a(n) = F(n-1)*F(n) + F(2n), where F(n) is a Fibonacci number. - Rigoberto Florez, Feb 06 2020
E.g.f.: (exp(-x) + exp(3*x/2) * (3*sqrt(5)*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2)))/5. - Stefano Spezia, Feb 06 2020
a(n)*F(n) = the number of ways to tile a 3-arm starfish (with n-1 cells on each arm and one cell in the center) using squares and dominos. - Greg Dresden and Hasita Kanamarlapudi, Oct 02 2023
Comments