cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192879 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

0, 1, 4, 10, 27, 70, 184, 481, 1260, 3298, 8635, 22606, 59184, 154945, 405652, 1062010, 2780379, 7279126, 19057000, 49891873, 130618620, 341963986, 895273339, 2343856030, 6136294752, 16065028225, 42058789924, 110111341546, 288275234715, 754714362598
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x+1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
A192879 is also generated as the coefficient sequence of x in the reduction x^2->x+1 of the polynomial v(n,x) defined by v(0,x) = 2, v(1,x) = x+1, and v(n,x) = x*v(n-1,x) + 2*(x^2)*v(n-1,x) + 1, for n>0, v(n,x) = F(n)*x^(n-1) + L(n)*x^n, where F(n) = A000045(n) (Fibonacci numbers) and L(n) = A000032(n) (Lucas numbers).

Examples

			The first six polynomials and reductions:
  p(0,x) = 3 -> 3
  p(1,x) = x -> x
  p(2,x) = 4*x^2 -> 4+4*x
  p(3,x) = 5*x^3 -> 5+10*x
  p(4,x) = 9*x^4 -> 18+27*x
  p(5,x) = 14*x^5 -> 42+27*x
In general, p(n,x) = (A104449(n))*x^n -> A192878(n) + A192879(n)*x.
		

Crossrefs

Programs

  • GAP
    a:=[0,1,4];; for n in [4..40] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 07 2019
  • Magma
    I:=[0,1,4]; [n le 3 select I[n] else 2*Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 07 2019
    
  • Maple
    with(combinat); seq( fibonacci(2*n) + fibonacci(n)*fibonacci(n-1), n=0..40); # G. C. Greubel, Feb 13 2020
  • Mathematica
    (See A192878.)
    LinearRecurrence[{2,2,-1}, {0,1,4}, 30] (* G. C. Greubel, Jan 07 2019 *)
    a[n_] := a[n] = 2*a[n-1]+2*a[n - 2]-a[n-3]; a[0] = 0; a[1]=1; a[2]=4; Table[a[n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *)
    Table[Fibonacci[n]*Fibonacci[n-1]+Fibonacci[2n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *)
  • PARI
    a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1+x)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Sep 29 2016
    
  • Sage
    (x*(1+2*x)/((1+x)*(1-3*x+x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), with a(0) = 0, a(1) = 1, a(2) = 4.
G.f.: x * (1+2*x) / ((1+x) * (1-3*x+x^2)). - Colin Barker, Jun 18 2012
a(n) = (2^(-1-n) * ((-1)^n*2^(1+n) + (3+sqrt(5))^n * (-1+3*sqrt(5)) - (3-sqrt(5))^n * (1+3*sqrt(5))))/5. - Colin Barker, Sep 29 2016
a(n) = F(n-1)*F(n) + F(2n), where F(n) is a Fibonacci number. - Rigoberto Florez, Feb 06 2020
E.g.f.: (exp(-x) + exp(3*x/2) * (3*sqrt(5)*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2)))/5. - Stefano Spezia, Feb 06 2020
a(n)*F(n) = the number of ways to tile a 3-arm starfish (with n-1 cells on each arm and one cell in the center) using squares and dominos. - Greg Dresden and Hasita Kanamarlapudi, Oct 02 2023