A192883 Constant term in the reduction by (x^2 -> x + 1) of the polynomial F(n+3)*x^n, where F = A000045 (Fibonacci sequence).
2, 0, 5, 8, 26, 63, 170, 440, 1157, 3024, 7922, 20735, 54290, 142128, 372101, 974168, 2550410, 6677055, 17480762, 45765224, 119814917, 313679520, 821223650, 2149991423, 5628750626, 14736260448, 38580030725, 101003831720, 264431464442, 692290561599
Offset: 0
Examples
G.f. = 2 + 5*x^2 + 8*x^3 + 26*x^4 + 63*x^5 + 170*x^6 + ... - _Michael Somos_, Mar 18 2022
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
GAP
a:=[2,0,5];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ( 2-4*x+x^2)/((1+x)*(1-3*x+x^2)) )); // G. C. Greubel, Jan 09 2019 -
Maple
with(combinat):seq(fibonacci(n-1)*fibonacci(n+3), n=0..27): # Gary Detlefs, Oct 19 2011
-
Mathematica
q = x^2; s = x + 1; z = 28; p[0, x_] := 2; p[1, x_] := 3 x; p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192883 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* minus A121646 *) LinearRecurrence[{2,2,-1}, {2,0,5}, 30] (* G. C. Greubel, Jan 09 2019 *) a[ n_] := Fibonacci[n+1]^2 + (-1)^n; (* Michael Somos, Mar 18 2022 *)
-
PARI
a(n) = round((2^(-1-n)*(7*(-1)^n*2^(1+n)+(3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n)))/5) \\ Colin Barker, Sep 29 2016
-
PARI
Vec((2+x^2-4*x)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 29 2016
-
PARI
{a(n) = fibonacci(n+1)^2 + (-1)^n}; /* Michael Somos, Mar 18 2022 */
-
Sage
((2-4*x+x^2 )/((1+x)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = Fibonacci(n-1) * Fibonacci(n+3). - Gary Detlefs, Oct 19 2011
a(n) = Fibonacci(n+1)^2 + (-1)^n. - Gary Detlefs, Oct 19 2011
G.f.: ( 2-4*x+x^2 ) / ( (1+x)*(1-3*x+x^2) ). - R. J. Mathar, May 07 2014
a(n) = (2^(-1-n)*(7*(-1)^n*2^(1+n) + (3-sqrt(5))^(1+n) + (3+sqrt(5))^(1+n)))/5. - Colin Barker, Sep 29 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=2} 1/a(n) = 7/18.
Sum_{n>=2} (-1)^n/a(n) = (4/phi - 13/6)/3, where phi is the golden ratio (A001622). (End)
a(n) = a(-2-n) for all n in Z. - Michael Somos, Mar 18 2022
Comments