A192895 A000120-deficiency of n.
-1, 0, -1, 1, -1, 2, -2, 2, 1, 2, -2, 5, -2, 2, 1, 3, -1, 6, -2, 5, 3, 2, -3, 8, 0, 2, 1, 6, -3, 10, -4, 4, 4, 2, 3, 11, -2, 2, 2, 8, -2, 12, -3, 6, 7, 2, -4, 11, 1, 6, 1, 6, -3, 10, 1, 10, 2, 2, -4, 19, -4, 2, 5, 5, 4, 12, -2, 5, 4, 12, -3, 16, -2, 2, 8, 6
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a192895 n = sum (map a000120 $ filter ((== 0) . (mod n)) [1..n-1]) - a000120 n a192895_list = map a192895 [1..]
-
Mathematica
a[n_] := DivisorSum[n, Total[IntegerDigits[#, 2]]*(-1)^Boole[# == n]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015, adapted from PARI *)
-
PARI
a(n)=sumdiv(n,d,hammingweight(d)*(-1)^(d==n)) \\ Charles R Greathouse IV, Feb 07 2013
-
Python
from sympy import divisors def A192895(n): return sum((d.bit_count() if d
Chai Wah Wu, Jul 25 2023