cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A324100 A000120-deficiency of n permuted by A156552: a(n) = A192895(A156552(n)).

Original entry on oeis.org

-1, 0, -1, 1, -1, 2, -2, 2, 1, 3, -2, 4, -1, 2, 1, 5, -2, 6, -2, 6, 4, 7, -3, 5, 4, 2, 3, 8, 3, 9, -4, 2, 5, 5, 1, 10, -1, 12, 2, 11, -2, 12, -2, 2, 19, 13, -4, 8, 0, 12, -2, 14, -3, 11, -3, 14, 12, 15, -3, 16, 7, 2, 5, 5, 4, 17, 4, 2, -2, 18, 1, 19, 6, 2, 5, 8, 4, 20, -4, 10, 8, 21, 8, 20, 24, 42, 15, 22, 7, 16, 6, 28, 45, 20, 0, 23, 1, 12, 1
Offset: 2

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Crossrefs

Cf. A000120, A156552, A192895, A324113 (sign of each term).
Cf. A324101, A324102 (positions of nonnegative and negative terms).
Cf. also A324114, A324194.

Programs

Formula

a(n) = A192895(A156552(n)).

A324114 A000120-deficiency of n permuted by Doudna-sequence: a(n) = A192895(A005940(1+n)).

Original entry on oeis.org

-1, 0, -1, 1, -1, 2, 1, 2, -2, 2, 1, 5, 0, 6, 1, 3, -2, 2, 3, 5, 3, 10, 7, 8, 1, 6, 8, 11, 0, 10, 6, 4, -2, 2, 4, 6, 1, 12, 5, 8, 3, 12, 14, 19, 6, 22, 15, 11, -1, 8, 8, 12, 6, 24, 18, 16, 1, 12, 15, 19, 7, 18, 6, 5, -1, 2, 2, 6, 4, 12, 6, 10, 2, 12, 15, 21, 10, 22, 15, 11, 2, 14, 12, 21, 18, 36, 28, 28, 9, 24, 31, 37, 17, 38, 21, 14, 0, 8, 7
Offset: 0

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A192895(A005940(1+n)).
For n > 0, a(n) = A324194(A054429(n)).

A324194 A000120-deficiency of n permuted by A163511: a(n) = A192895(A163511(n)).

Original entry on oeis.org

-1, 0, 1, -1, 2, 1, 2, -1, 3, 1, 6, 0, 5, 1, 2, -2, 4, 6, 10, 0, 11, 8, 6, 1, 8, 7, 10, 3, 5, 3, 2, -2, 5, 6, 18, 7, 19, 15, 12, 1, 16, 18, 24, 6, 12, 8, 8, -1, 11, 15, 22, 6, 19, 14, 12, 3, 8, 5, 12, 1, 6, 4, 2, -2, 6, 12, 24, 11, 30, 27, 24, 8, 28, 34, 44, 17, 24, 19, 14, 3, 21, 29, 44, 22, 40, 27, 24, 9, 18, 18, 24, 10, 15, 7, 8, 0, 14, 21
Offset: 0

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Crossrefs

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A192895(n) = sumdiv(n, d, hammingweight(d)*(-1)^(d==n));
    A324194(n) = A192895(A163511(n));

Formula

a(n) = A192895(A163511(n)).
For n > 0, a(n) = A324114(A054429(n)).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A093653 Total number of 1's in binary expansion of all divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 3, 6, 4, 4, 5, 6, 4, 9, 4, 8, 9, 5, 3, 10, 4, 9, 9, 8, 5, 12, 6, 8, 9, 12, 5, 18, 6, 6, 8, 6, 9, 15, 4, 8, 10, 12, 4, 18, 5, 12, 15, 10, 6, 15, 7, 12, 9, 12, 5, 18, 11, 16, 10, 10, 6, 27, 6, 12, 17, 7, 8, 16, 4, 9, 10, 18, 5, 20, 4, 8, 16, 12, 11, 20, 6, 15, 12, 8, 5, 27, 9, 10, 12
Offset: 1

Views

Author

Jason Earls, May 16 2004

Keywords

Examples

			a(8) = 4 because the divisors of 8 are [1, 2, 4, 8] and in binary: 1, 10, 100, 1000, so four 1's.
		

Crossrefs

Cf. A226590 (number of 0's in binary expansion of all divisors of n).
Cf. A182627 (number of digits in binary expansion of all divisors of n).
Cf. A034690 (a decimal equivalent).

Programs

  • Maple
    a:= n-> add(add(i, i=Bits[Split](d)), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 17 2022
  • Mathematica
    Table[Plus@@DigitCount[Divisors[n], 2, 1], {n, 75}] (* Alonso del Arte, Sep 01 2013 *)
  • PARI
    A093653(n) = sumdiv(n,d,hammingweight(d)); \\ Antti Karttunen, Dec 14 2017
    
  • PARI
    a(n) = {my(v = valuation(n, 2), n = (n>>v)); sumdiv(n, d, hammingweight(d)) * (v + 1)} \\ David A. Corneth, Feb 15 2023
    
  • Python
    from sympy import divisors
    def a(n): return sum(bin(d).count("1") for d in divisors(n))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Apr 20 2022
    
  • Python
    from sympy import divisors
    def A093653(n): return sum(d.bit_count() for d in divisors(n, generator=True))
    print([A093653(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 15 2023

Formula

a(n) = Sum_{k = 0..n} if(mod(n, k) = 0, A000120(k), 0). - Paul Barry, Jan 14 2005
a(n) = A182627(n) - A226590(n). - Jaroslav Krizek, Sep 01 2013
a(n) = A292257(n) + A000120(n). - Antti Karttunen, Dec 14 2017
From Bernard Schott, May 16 2022: (Start)
If prime p = A000043(n), then a(2^p-1) = a(A000668(n)) = p+1 = A050475(n).
a(2^n) = n+1 (End)

A175522 A000120-perfect numbers.

Original entry on oeis.org

2, 25, 95, 111, 119, 123, 125, 169, 187, 219, 221, 247, 289, 335, 365, 411, 415, 445, 485, 493, 505, 629, 655, 685, 695, 697, 731, 767, 815, 841, 871, 943, 949, 965, 985, 1003, 1139, 1207, 1241, 1261, 1263, 1273, 1343, 1387, 1465, 1469, 1507, 1513, 1529, 1563
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Let A(n), n>=1, be an infinite positive sequence.
We call a number n:
A-deficient if Sum{d|n, d
A-abundant if Sum{d|n, d A(n),
and
A-perfect if Sum{d|n, d
depending on the sum over the proper divisors of n.
The definition generalizes the standard nomenclature of deficient (A005100), abundant (A005101) and perfect numbers (A000396), which is recovered by setting A(n) = n = A000027(n).
Conjecture: if there exist infinitely many A-deficient numbers and infinitely many A-abundant numbers, then there exist infinitely many A-perfect numbers.
Note that the sequence contains squares of all Fermat primes larger than 3 (see A019434). [This would also hold for squares of any hypothetical Fermat primes after the fifth one, 65537. Comment clarified by Antti Karttunen, May 14 2015]
A192895(a(n)) = 0. - Reinhard Zumkeller, Jul 12 2011

Examples

			Proper divisors of 119 are 1,7,17. Since A000120(1)+A000120(7)+A000120(17)=A000120(119), then 119 is in the sequence.
		

Crossrefs

Cf. A175524 (deficient version), A175526 (abundant version), A000120, A000396.
Subsequence of A257691 (non-abundant version).
Positions of zeros in A192895.

Programs

  • Haskell
    import Data.List (elemIndices)
    a175522 n = a175522_list !! (n-1)
    a175522_list = map (+ 1) $ elemIndices 0 a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    binw[n_] := DigitCount[n, 2, 1]; Select[Range[1500], binw[#] == DivisorSum[#, binw[#1] &]/2 &] (* Amiram Eldar, Dec 14 2020 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))==2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
    
  • Python
    from sympy import divisors
    def A000120(n): return bin(n).count('1')
    def aupto(limit):
      alst = []
      for m in range(1, limit+1):
        if A000120(m) == sum(A000120(d) for d in divisors(m)[:-1]): alst += [m]
      return alst
    print(aupto(1563)) # Michael S. Branicky, Feb 25 2021
  • Sage
    A000120 = lambda x: x.digits(base=2).count(1)
    is_A175522 = lambda x: sum(A000120(d) for d in divisors(x)) == 2*A000120(x)
    A175522 = filter(is_A175522, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    

Extensions

More terms from Amiram Eldar, Feb 18 2019

A175526 A000120-abundant numbers.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 117, 118, 120
Offset: 1

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Definition see in A175522. All even numbers > 2 are in the sequence.
A192895(a(n)) > 0. Reinhard Zumkeller, Jul 12 2011

Crossrefs

Cf. A175522 (perfect version), A175524 (deficient version), A257691 (complement, non-abundant version).
Cf. also A005100, A005101.
a(n) differs from A091212(n) and from A205783(n+1) for the first time at n=37, where a(37) = 55, while 55 is missing from both A091212 and A205783.
Differs from A192506 for the first time at n=54, where a(54) = 77, while 77 is missing from A192506.

Programs

  • Haskell
    import Data.List (findIndices)
    a175526 n = a175526_list !! (n-1)
    a175526_list = map (+ 1) $ findIndices (> 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Maple
    isA175526 := proc(n) s := 0 ; for d in (numtheory[divisors](n) minus {n}) do s := s+A000120(d) ; end do: evalb(s> A000120(n)) ; end proc:
    for n from 1 to 120 do if isA175526(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 11 2011
  • Mathematica
    okQ[n_] := DivisorSum[n, Total[IntegerDigits[#, 2]]*(-1)^Boole[#==n]&]>0; Select[Range[120], okQ] (* Jean-François Alcover, Dec 06 2015 *)
  • PARI
    A192895(n) = sumdiv(n, d, hammingweight(d)*(-1)^(d==n)); \\ Charles R Greathouse IV, Feb 07 2013
    isA175526(n) = (A192895(n) > 0);
    n = 0; i = 0; while(i < 10000, n++; if(isA175526(n), i++; write("b175526.txt", i, " ", n)));
    \\ Antti Karttunen, May 11 2015
    
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))>2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175526 = lambda x: sum(A000120(d) for d in divisors(x)) > 2*A000120(x)
    A175526 = filter(is_A175526, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    

A292257 a(n) is the total number of 1's in binary expansion of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 4, 1, 7, 1, 5, 5, 4, 1, 8, 1, 7, 6, 5, 1, 10, 3, 5, 5, 9, 1, 14, 1, 5, 6, 4, 6, 13, 1, 5, 6, 10, 1, 15, 1, 9, 11, 6, 1, 13, 4, 9, 5, 9, 1, 14, 6, 13, 6, 6, 1, 23, 1, 7, 11, 6, 6, 14, 1, 7, 7, 15, 1, 18, 1, 5, 12, 9, 7, 16, 1, 13, 9, 5, 1, 24, 5, 6, 7, 13, 1, 26, 7, 11, 8, 7, 6, 16, 1, 11, 10, 15, 1, 14, 1, 13, 18
Offset: 1

Author

Antti Karttunen, Oct 04 2017

Keywords

Comments

If a(n) == A000120(n), then n is in A175522, if a(n) < A000120(n), then n is in A175524, and if a(n) > A000120(n), then n is in A175526.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DigitCount[#, 2, 1] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
    Table[Total[Flatten[IntegerDigits[#,2]&/@Most[Divisors[n]]]],{n,120}] (* Harvey P. Dale, Oct 11 2024 *)
  • PARI
    A292257(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA000120(d).
a(n) = A093653(n) - A000120(n).
a(n) = A192895(n) + A000120(n).
a(n) = A001222(A293214(n)).
A000035(a(n)) = A000035(A290090(n)). [Parity-wise equivalent with A290090.]

A175524 A000120-deficient numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

For a more precise definition, see comment in A175522.
All odd primes (A065091) are in the sequence. Squares of the form (2^n+3)^2, n>=3, where 2^n+3 is prime (A057733), are also in the sequence. [Proof: (2^n+3)^2 = 2^(2*n)+2^(n+2)+2^(n+1)+2^3+1. Thus, since n>=3, A000120((2^n+3)^2)=5. Also, for primes of the form 2^n+3, (2^n+3)^2 has only two proper divisors, 1 and 2^n+3, so A000120(1)+A000120(2^n+3) = 4, and in conclusion, (2^n+3)^2 is deficient. QED]
It is natural to assume that there are infinitely many primes of the form 2^n+3 (by analogy with the Mersenne sequence 2^n-1). If this is true, the sequence contains infinitely many composite numbers, because it contains all of the form (2^n+3)^2.
a(n) = A006005(n) for n <= 30;

Crossrefs

Cf. A175522 (perfect version), A175526 (abundant version), A000120, A005100, A005101, A006005, A192895.

Programs

  • Haskell
    import Data.List (findIndices)
    a175524 n = a175524_list !! (n-1)
    a175524_list = map (+ 1) $ findIndices (< 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    Select[Range[270], DivisorSum[#, DigitCount[#, 2, 1] &] < 2*DigitCount[#, 2, 1] &] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))<2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175524 = lambda x: sum(A000120(d) for d in divisors(x)) < 2*A000120(x)
    A175524 = filter(is_A175524, IntegerRange(1, 10**4)) # D. S. McNeil, Dec 04 2010
    

Formula

A192895(a(n)) < 0. - Reinhard Zumkeller, Jul 12 2011

Extensions

More terms from Amiram Eldar, Feb 18 2019
Showing 1-10 of 17 results. Next