cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A360639 Numbers k such that k and k+2 are both A000120-perfect numbers (A175522).

Original entry on oeis.org

123, 219, 695, 1261, 1851, 1943, 3543, 5963, 7031, 7613, 7769, 7861, 10081, 11357, 11629, 12083, 13211, 13791, 14185, 15699, 15835, 15929, 16241, 18649, 20197, 20989, 22521, 23449, 23521, 23963, 24461, 27215, 27829, 28263, 28367, 29485, 29651, 30359, 30901, 31803
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

The smallest gap between two consecutive A000120-perfect numbers is 2.
All terms of this sequence are odd.

Examples

			123 is a term since 123 and 125 are both in A175522: A093653(123)/A000120(123) = A093653(125)/A000120(125) = 12/6 = 2.
		

Crossrefs

Subsequence of A175522.

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] == 2 * DigitCount[n, 2, 1]; seq[kmax_] := Module[{s = {}, k = 1, q1 = False, q2}, Do[q2 = q[k]; If[q1 && q2, AppendTo[s, k-2]]; q1 = q2, {k, 3, kmax, 2}]; s]; seq[32000]
  • PARI
    lista(kmax) = {my(is1 = 0, is2); forstep(k=1, kmax, 2, is2 = (sumdiv(k, d, hammingweight(d)) == 2*hammingweight(k)); if(is1 && is2, print1(k-2, ", ")); is1 = is2); }

A360640 a(n) is the start of the least run of exactly n consecutive odd numbers that are A000120-perfect numbers (A175522).

Original entry on oeis.org

25, 123, 31803, 8019811, 130194395
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

a(6) > 2*10^11, if it exists.

Examples

			Table of values of A000120 and A093653 for k = a(n), a(n)+2, ..., a(n)+2*(n-1):
  n |      a(n)              A000120(k)              A093653(k)
  --+----------------------------------------------------------
  1 |        25                       3                       6
  2 |       123                    6, 6.                 12, 12
  3 |     31803              10, 10, 11              20, 20, 22
  4 |   8019811          15, 15, 16, 15          30, 30, 32, 30
  5 | 130194395  17, 17, 18, 15, 16, 16  34, 34, 36, 30, 32, 32
		

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] == 2 * DigitCount[n, 2, 1]; seq[len_, nmax_] := Module[{s = Table[0, {len}], v = {}, n = 1, c = 0, m}, While[c <= len && n <= nmax, If[q[n], v = Join[v, {n}], m = Length[v]; v = {}; If[0 < m <= len && s[[m]] == 0, c++; s[[m]] = n - 2*m]]; n += 2]; s]; seq[3, 10^5]
  • PARI
    lista(len, nmax) = {my(s = vector(len), v=[], n = 1, c = 0, m); while(c <= len && n <= nmax, if(sumdiv(n, d, hammingweight(d)) == 2 * hammingweight(n), v = concat(v, n), m =#v; v = []; if(0 < m && m <= len && s[m] == 0, c++; s[m] = n - 2*m)); n += 2); s};

A360643 a(n) is the least A000120-perfect number (A175522) whose binary weight (A000120) is n, or 0 if no such number exists.

Original entry on oeis.org

2, 0, 25, 169, 841, 95, 247, 943, 767, 5999, 6139, 16123, 30655, 90109, 122847, 245695, 522237, 1572591, 1966015, 3932095, 12582651, 28311519, 33423343, 100663023, 133693435, 402128831, 931135479, 1069547515, 1610612607, 11802771447, 12884901567, 25736249279
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

Apparently, the sequence is increasing after n = 6.

Examples

			a(1) = 2 since A000120(2) = 1 and A093653(2)/A000120(2) = 4/2 = 2.
a(2) = 0 since there is no number m with binary weight 2 and with A093653(m) = 4.
a(3) = 25 since A000120(25) = 3 and A093653(25)/A000120(25) = 6/3 = 2, and 25 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    seq[len_, nmax_] := Module[{s = Table[-1, {len}], n = 3, c = 2, bw, dbw}, s[[1]] = 2; While[c < len && n <= nmax, bw = DigitCount[n, 2, 1]; If[bw <= len && s[[bw]] < 0, dbw = DivisorSum[n, DigitCount[#, 2, 1] &]; If[dbw == 2*bw, c++; s[[bw]] = n]]; n += 2]; s]; seq[16, 10^6]
  • PARI
    lista(len, nmax) = {my(s = vector(len,i,-1), n = 3, c = 2, bw, dbw); s[1] = 2; while(c < len && n <= nmax, bw = hammingweight(n); if(bw <= len && s[bw] < 0, dbw = sumdiv(n, d, hammingweight(d)); if(dbw == 2*bw, c++; s[bw] = n)); n += 2); s};

A074206 Kalmár's [Kalmar's] problem: number of ordered factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2003

Keywords

Comments

a(0)=0, a(1)=1; thereafter a(n) is the number of ordered factorizations of n as a product of integers greater than 1.
Kalmár (1931) seems to be the earliest reference that mentions this sequence (as opposed to A002033). - N. J. A. Sloane, May 05 2016
a(n) is the permanent of the n-1 X n-1 matrix A with (i,j) entry = 1 if j|i+1 and = 0 otherwise. This is because ordered factorizations correspond to nonzero elementary products in the permanent. For example, with n=6, 3*2 -> 1,3,6 [partial products] -> 6,3,1 [reverse list] -> (6,3)(3,1) [partition into pairs with offset 1] -> (5,3)(2,1) [decrement first entry] -> (5,3)(2,1)(1,2)(3,4)(4,5) [append pairs (i,i+1) to get a permutation] -> elementary product A(1,2)A(2,1)A(3,4)A(4,5)A(5,3). - David Callan, Oct 19 2005
This sequence is important in describing the amount of energy in all wave structures in the Universe according to harmonics theory. - Ray Tomes (ray(AT)tomes.biz), Jul 22 2007
a(n) appears to be the number of permutation matrices contributing to the Moebius function. See A008683 for more information. Also a(n) appears to be the Moebius transform of A067824. Furthermore it appears that except for the first term a(n)=A067824(n)*(1/2). Are there other sequences such that when the Moebius transform is applied, the new sequence is also a constant factor times the starting sequence? - Mats Granvik, Jan 01 2009
Numbers divisible by n distinct primes appear to have ordered factorization values that can be found in an n-dimensional summatory Pascal triangle. For example, the ordered factorization values for numbers divisible by two distinct primes can be found in table A059576. - Mats Granvik, Sep 06 2009
Inverse Mobius transform of A174725 and also except for the first term, inverse Mobius transform of A174726. - Mats Granvik, Mar 28 2010
a(n) is a lower bound on the worst-case number of solutions to the probed partial digest problem for n fragments of DNA; see the Newberg & Naor reference, below. - Lee A. Newberg, Aug 02 2011
All integers greater than 1 are perfect numbers over this sequence (for definition of A-perfect numbers, see comment to A175522). - Vladimir Shevelev, Aug 03 2011
If n is squarefree, then a(n) = A000670(A001221(n)) = A000670(A001222(n)). - Vladimir Shevelev and Franklin T. Adams-Watters, Aug 05 2011
A034776 lists the values taken by this sequence. - Robert G. Wilson v, Jun 02 2012
From Gus Wiseman, Aug 25 2020: (Start)
Also the number of strict chains of divisors from n to 1. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 2/1 4/1 6/1 8/1 12/1 30/1
4/2/1 6/2/1 8/2/1 12/2/1 30/2/1
6/3/1 8/4/1 12/3/1 30/3/1
8/4/2/1 12/4/1 30/5/1
12/6/1 30/6/1
12/4/2/1 30/10/1
12/6/2/1 30/15/1
12/6/3/1 30/6/2/1
30/6/3/1
30/10/2/1
30/10/5/1
30/15/3/1
30/15/5/1
(End)
a(n) is also the number of ways to tile a strip of length log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + ...
Number of ordered factorizations of 8 is 4: 8 = 2*4 = 4*2 = 2*2*2.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • Kalmár, Laszlo, A "factorisatio numerorum" problemajarol [Hungarian], Matemat. Fizik. Lapok, 38 (1931), 1-15.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.

Crossrefs

Apart from initial term, same as A002033.
a(A002110) = A000670, row sums of A251683.
A173382 (and A025523) gives partial sums.
A124433 has these as unsigned row sums.
A334996 has these as row sums.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A008480 counts ordered prime factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A253249 counts strict chains of divisors.

Programs

  • Haskell
    a074206 n | n <= 1 = n
    | otherwise = 1 + (sum $ map (a074206 . (div n)) $
    tail $ a027751_row n)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    A074206:= proc(n) option remember; if n > 1 then `+`(op(apply(A074206, numtheory[divisors](n)[1..-2]))) else n fi end: # M. F. Hasler, Oct 12 2018
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[20000] (* N. J. A. Sloane, May 04 2016, based on program in A002033 *)
    ccc[n_]:=Switch[n,0,{},1,{{1}},,Join@@Table[Prepend[#,n]&/@ccc[d],{d,Most[Divisors[n]]}]]; Table[Length[ccc[n]],{n,0,100}] (* _Gus Wiseman, Aug 25 2020 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A/=2; A[1]=1; concat(0,A) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {a(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, a(A[k])))}; /* Michael Somos, Dec 26 2016 */
    
  • PARI
    A074206(n)=if(n>1, sumdiv(n, i, if(iA074206(i))),n) \\ M. F. Hasler, Oct 12 2018
    
  • PARI
    A74206=[1]; A074206(n)={if(#A74206A074206(i)))} \\ Use memoization for computing many values. - M. F. Hasler, Oct 12 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, for(j = 2, n \ i, res[i*j] += res[i])); concat(0, res)} \\ David A. Corneth, Oct 13 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, d = divisors(i); res[i] += sum(j = 1, #d-1, res[d[j]])); concat(0, res)} \\ somewhat faster than progs above for finding first terms of n. \\ David A. Corneth, Oct 12 2018
    
  • PARI
    a(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Aug 30 2020
    
  • Python
    from math import prod
    from functools import lru_cache
    from sympy import divisors, factorint, prime
    @lru_cache(maxsize=None)
    def A074206(n): return sum(A074206(d) for d in divisors(prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))),generator=True,proper=True)) if n > 1 else n # Chai Wah Wu, Sep 16 2022
  • SageMath
    @cached_function
    def minus_mu(n):
        if n < 2: return n
        return sum(minus_mu(d) for d in divisors(n)[:-1])
    # Note that changing the sign of the sum gives the Möbius function A008683.
    print([minus_mu(n) for n in (0..96)]) # Peter Luschny, Dec 26 2016
    

Formula

With different offset: a(n) = sum of all a(i) such that i divides n and i < n. - Clark Kimberling
a(p^k) = 2^(k-1) if k>0 and p is a prime.
Dirichlet g.f.: 1/(2-zeta(s)). - Herbert S. Wilf, Apr 29 2003
a(n) = A067824(n)/2 for n>1; a(A122408(n)) = A122408(n)/2. - Reinhard Zumkeller, Sep 03 2006
If p,q,r,... are distinct primes, then a(p*q)=3, a(p^2*q)=8, a(p*q*r)=13, a(p^3*q)=20, etc. - Vladimir Shevelev, Aug 03 2011 [corrected by Charles R Greathouse IV, Jun 02 2012]
a(0) = 0, a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 11 2017
a(n) = a(A046523(n)); a(A025487(n)) = A050324(n): a(n) depends only on the nonzero exponents in the prime factorization of n, more precisely prime signature of n, cf. A124010 and A320390. - M. F. Hasler, Oct 12 2018
a(n) = A000670(A001221(n)) for squarefree n. In particular a(A002110(n)) = A000670(n). - Amiram Eldar, May 13 2019
a(n) = A050369(n)/n, for n>=1. - Ridouane Oudra, Aug 31 2019
a(n) = A361665(A181819(n)). - Pontus von Brömssen, Mar 25 2023
From Ridouane Oudra, Nov 02 2023: (Start)
If p,q are distinct primes, and n,m>0 then we have:
a(p^n*q^m) = Sum_{k=0..min(n,m)} 2^(n+m-k-1)*binomial(n,k)*binomial(m,k);
More generally: let tau[k](n) denote the number of ordered factorizations of n as a product of k terms, also named the k-th Piltz function (see A007425), then we have for n>1:
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=1..j} (-1)^(j-k)*binomial(j,k)*tau[k](n), or
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=0..j-1} (-1)^k*binomial(j,k)*tau[j-k](n). (End)

Extensions

Originally this sequence was merged with A002033, the number of perfect partitions. Herbert S. Wilf suggested that it warrants an entry of its own.

A175526 A000120-abundant numbers.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 117, 118, 120
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Definition see in A175522. All even numbers > 2 are in the sequence.
A192895(a(n)) > 0. Reinhard Zumkeller, Jul 12 2011

Crossrefs

Cf. A175522 (perfect version), A175524 (deficient version), A257691 (complement, non-abundant version).
Cf. also A005100, A005101.
a(n) differs from A091212(n) and from A205783(n+1) for the first time at n=37, where a(37) = 55, while 55 is missing from both A091212 and A205783.
Differs from A192506 for the first time at n=54, where a(54) = 77, while 77 is missing from A192506.

Programs

  • Haskell
    import Data.List (findIndices)
    a175526 n = a175526_list !! (n-1)
    a175526_list = map (+ 1) $ findIndices (> 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Maple
    isA175526 := proc(n) s := 0 ; for d in (numtheory[divisors](n) minus {n}) do s := s+A000120(d) ; end do: evalb(s> A000120(n)) ; end proc:
    for n from 1 to 120 do if isA175526(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 11 2011
  • Mathematica
    okQ[n_] := DivisorSum[n, Total[IntegerDigits[#, 2]]*(-1)^Boole[#==n]&]>0; Select[Range[120], okQ] (* Jean-François Alcover, Dec 06 2015 *)
  • PARI
    A192895(n) = sumdiv(n, d, hammingweight(d)*(-1)^(d==n)); \\ Charles R Greathouse IV, Feb 07 2013
    isA175526(n) = (A192895(n) > 0);
    n = 0; i = 0; while(i < 10000, n++; if(isA175526(n), i++; write("b175526.txt", i, " ", n)));
    \\ Antti Karttunen, May 11 2015
    
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))>2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175526 = lambda x: sum(A000120(d) for d in divisors(x)) > 2*A000120(x)
    A175526 = filter(is_A175526, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    

A192895 A000120-deficiency of n.

Original entry on oeis.org

-1, 0, -1, 1, -1, 2, -2, 2, 1, 2, -2, 5, -2, 2, 1, 3, -1, 6, -2, 5, 3, 2, -3, 8, 0, 2, 1, 6, -3, 10, -4, 4, 4, 2, 3, 11, -2, 2, 2, 8, -2, 12, -3, 6, 7, 2, -4, 11, 1, 6, 1, 6, -3, 10, 1, 10, 2, 2, -4, 19, -4, 2, 5, 5, 4, 12, -2, 5, 4, 12, -3, 16, -2, 2, 8, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 12 2011

Keywords

Crossrefs

Cf. A257691 (positions where a(n) <= 0), A294905 (and its char.fun).

Programs

  • Haskell
    a192895 n =
       sum (map a000120 $ filter ((== 0) . (mod n)) [1..n-1]) - a000120 n
    a192895_list = map a192895 [1..]
    
  • Mathematica
    a[n_] := DivisorSum[n, Total[IntegerDigits[#, 2]]*(-1)^Boole[# == n]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015, adapted from PARI *)
  • PARI
    a(n)=sumdiv(n,d,hammingweight(d)*(-1)^(d==n)) \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    from sympy import divisors
    def A192895(n): return sum((d.bit_count() if dChai Wah Wu, Jul 25 2023

Formula

a(n) = Sum(A000120(d): 1 <= d < n and n mod d = 0) - A000120(n); see A175522 for motivation and more information;
a(A175524(n)) < 0; a(A175522(n)) = 0; a(A175526(n)) > 0.
a(n) = A292257(n) - A000120(n). - Antti Karttunen, Nov 10 2017

A292257 a(n) is the total number of 1's in binary expansion of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 4, 1, 7, 1, 5, 5, 4, 1, 8, 1, 7, 6, 5, 1, 10, 3, 5, 5, 9, 1, 14, 1, 5, 6, 4, 6, 13, 1, 5, 6, 10, 1, 15, 1, 9, 11, 6, 1, 13, 4, 9, 5, 9, 1, 14, 6, 13, 6, 6, 1, 23, 1, 7, 11, 6, 6, 14, 1, 7, 7, 15, 1, 18, 1, 5, 12, 9, 7, 16, 1, 13, 9, 5, 1, 24, 5, 6, 7, 13, 1, 26, 7, 11, 8, 7, 6, 16, 1, 11, 10, 15, 1, 14, 1, 13, 18
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2017

Keywords

Comments

If a(n) == A000120(n), then n is in A175522, if a(n) < A000120(n), then n is in A175524, and if a(n) > A000120(n), then n is in A175526.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DigitCount[#, 2, 1] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
    Table[Total[Flatten[IntegerDigits[#,2]&/@Most[Divisors[n]]]],{n,120}] (* Harvey P. Dale, Oct 11 2024 *)
  • PARI
    A292257(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA000120(d).
a(n) = A093653(n) - A000120(n).
a(n) = A192895(n) + A000120(n).
a(n) = A001222(A293214(n)).
A000035(a(n)) = A000035(A290090(n)). [Parity-wise equivalent with A290090.]

A175524 A000120-deficient numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

For a more precise definition, see comment in A175522.
All odd primes (A065091) are in the sequence. Squares of the form (2^n+3)^2, n>=3, where 2^n+3 is prime (A057733), are also in the sequence. [Proof: (2^n+3)^2 = 2^(2*n)+2^(n+2)+2^(n+1)+2^3+1. Thus, since n>=3, A000120((2^n+3)^2)=5. Also, for primes of the form 2^n+3, (2^n+3)^2 has only two proper divisors, 1 and 2^n+3, so A000120(1)+A000120(2^n+3) = 4, and in conclusion, (2^n+3)^2 is deficient. QED]
It is natural to assume that there are infinitely many primes of the form 2^n+3 (by analogy with the Mersenne sequence 2^n-1). If this is true, the sequence contains infinitely many composite numbers, because it contains all of the form (2^n+3)^2.
a(n) = A006005(n) for n <= 30;

Crossrefs

Cf. A175522 (perfect version), A175526 (abundant version), A000120, A005100, A005101, A006005, A192895.

Programs

  • Haskell
    import Data.List (findIndices)
    a175524 n = a175524_list !! (n-1)
    a175524_list = map (+ 1) $ findIndices (< 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    Select[Range[270], DivisorSum[#, DigitCount[#, 2, 1] &] < 2*DigitCount[#, 2, 1] &] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))<2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175524 = lambda x: sum(A000120(d) for d in divisors(x)) < 2*A000120(x)
    A175524 = filter(is_A175524, IntegerRange(1, 10**4)) # D. S. McNeil, Dec 04 2010
    

Formula

A192895(a(n)) < 0. - Reinhard Zumkeller, Jul 12 2011

Extensions

More terms from Amiram Eldar, Feb 18 2019

A257691 Numbers that are not A000120-abundant.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 121, 123, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 219, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257
Offset: 1

Views

Author

Antti Karttunen, May 11 2015

Keywords

Comments

A000120-nonabundant numbers: Numbers n for which A192895(n) <= 0.

Crossrefs

Complement of A175526 (A000120-abundant numbers).
Disjoint union of A175522 (A000120-perfect numbers) and A175524 (A000120-deficient numbers).
Differs from A206074(n-1), A186891(n) and A257688(n) for the first time at n=19, where a(19) = 59, while A206074(18) = A186891(19) = A257688(19) = 55, a term missing from here.
Differs from A257689 for the first time at n=24, where a(24) = 79, while A257689(24) = 77, a term missing from here.

Programs

A175548 Binary weight of sigma(n).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 3, 2, 2, 5, 2, 4, 2, 3, 1, 2, 2, 4, 5, 3, 2, 3, 4, 2, 1, 6, 2, 4, 2, 5, 3, 4, 3, 4, 3, 2, 3, 3, 4, 2, 2, 5, 4, 5, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 5, 2, 3, 7, 3, 2, 2, 6, 2, 2, 2, 4, 3, 4, 5, 3, 2, 3, 2, 5, 5, 6, 3, 3, 4, 2, 4, 4, 4, 5, 3, 3, 1, 2, 4, 6, 3, 5, 4, 5, 4, 4, 3, 4, 2
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

The sequence is considered in connection with A175522, A175524, A175526.
a(n)=1 if n is in A046528. - Robert Israel, Nov 07 2017

Examples

			a(4) = 3 because the divisors of 4 add up to 7, a number which in binary is written as 3 ones.
		

Crossrefs

Programs

  • Maple
    seq(convert(convert(numtheory:-sigma(n),base,2),`+`),n=1..100); # Robert Israel, Nov 07 2017
  • Mathematica
    Table[Plus@@IntegerDigits[DivisorSigma[1, n], 2], {n, 80}] (* Alonso del Arte, Dec 03 2010 *)
  • PARI
    a(n) = hammingweight(sigma(n)); \\ Michel Marcus, Feb 08 2016

Formula

a(n) = A000120(A000203(n)).

Extensions

More terms from Antti Karttunen, Nov 07 2017
Showing 1-10 of 26 results. Next