cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192921 Constant term in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 2, 2, 7, 16, 44, 113, 298, 778, 2039, 5336, 13972, 36577, 95762, 250706, 656359, 1718368, 4498748, 11777873, 30834874, 80726746, 211345367, 553309352, 1448582692, 3792438721, 9928733474, 25993761698, 68052551623, 178163893168, 466439127884, 1221153490481
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = x*p(n-1,x) +(x^2)*p(n-2,x), with p(0,x)=1, p(1,x)=1+x^2. For discussions of polynomial reduction, see A192232, A192744, and A192872.

Examples

			The coefficients in the polynomials p(n,x) are Fibonacci numbers.  The first seven and their reductions:
...
1 -> 1
1 + x^2 -> 2 + x
x + x^2 + x^3 -> 2 + 4*x
2*x^2 + x^3 + 2*x^4 -> 7 + 10*x
3*x^3 + 2*x^4 + 3*x^5 -> 16 + 27*x
5*x^4 + 3*x^5 + 5*x^6 -> 44 + 70*x
8*x^5 + 5*x^6 + 8*x^7 -> 113 + 184*x,
so that A192921=(1,2,2,7,16,44,113,...).
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(n-2)^2 +Fibonacci(n)*Fibonacci(n+1)); # G. C. Greubel, Feb 06 2019
  • Magma
    [Fibonacci(n-2)^2 + Fibonacci(n)*Fibonacci(n+1): n in [0..30]]; // G. C. Greubel, Feb 06 2019
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,2,2>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 28 2016
  • Mathematica
    q = x^2; s = x + 1; z = 28;
    p[0, x_] := 1; p[1, x_] := x^2 + 1;
    p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192921 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192879 *)
    LinearRecurrence[{2,2,-1}, {1,2,2}, 30] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    a(n) = round((2^(-n)*(-3*(-2)^n-(-4+sqrt(5))*(3+sqrt(5))^n+(3-sqrt(5))^n*(4+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(-(2*x-1)*(1+2*x)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    {a(n) = fibonacci(n-2)^2 +fibonacci(n)*fibonacci(n+1)}; \\ G. C. Greubel, Feb 06 2019
    
  • Sage
    [fibonacci(n-2)^2 +fibonacci(n)*fibonacci(n+1) for n in range(30)] # G. C. Greubel, Feb 06 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-2*x)*(1+2*x) / ( (1+x)*(1-3*x+x^2) ). - R. J. Mathar, May 08 2014
a(n) = A059929(n-1) + 2*A059929(n-2). - R. J. Mathar, May 08 2014
a(n) = F(n-4)*F(n) + F(n-1)*F(n+2), where F(-4)=-3, F(-3)=2, F(-2)=-1, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = (2^(-n)*(-3*(-2)^n-(-4+sqrt(5))*(3+sqrt(5))^n+(3-sqrt(5))^n*(4+sqrt(5))))/5. - Colin Barker, Oct 01 2016