A207851
Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with only central 1-1 cut (no other 1-1 cuts).
Original entry on oeis.org
4, 16, 324, 12100, 595984, 35236096, 2363709924, 174221090404, 13815880848784, 1161868621405636, 102544273501721104, 9424551852935116804, 896612457556434503824, 87881363502264179831824, 8840846163309028336017124
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
- Panayotis Vlamos, Table of n, a(n) for n = 1..22
- Iwan Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- A. Panayotopoulos and P. Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
A208357
Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with central 1-1 cut.
Original entry on oeis.org
4, 64, 1764, 68644, 3341584, 190992400, 12310790116, 871343837764, 66469126179600, 5391179227622500, 460213149486493456, 41024422751464102500, 3795407861954983718544, 362631040029370613957184, 35638591665642822414493156, 3590789985613539065908070116, 369893506453438150061450367376
Offset: 1
- Antonios Panayotopoulos and Panos Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- Antonios Panayotopoulos and Panayiotis Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- Antonios Panayotopoulos and Panos Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
- Antonios Panayotopoulos and Panos Tsikouras, Meanders and Motzkin Words, J. Integer Seq., Vol. 7 (2004), Article 04.1.2.
- Antonios Panayotopoulos and Panayiotis Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
A208358
Number of meanders of order n without 1-1 cuts.
Original entry on oeis.org
1, 2, 4, 18, 110, 772, 5936, 48618, 417398, 3716972, 34086194, 320225348, 3069943298, 29943487732, 296447910268, 2973356043818, 30166687749922, 309197338572932, 3198206243665998, 33353864893990660, 350443763627186256, 3707087785160487888, 39458245623693926384, 422389058260155207568
Offset: 1
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algebrique. Laboratoire Bordelais de Recherche Informatique, Universite Bordeaux I, 1991, pp. 287-303.
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
Showing 1-3 of 3 results.
Comments