Antonios Panayotopoulos has authored 7 sequences.
A227167
The number of meandering curves of order n.
Original entry on oeis.org
1, 1, 6, 8, 50, 72, 462, 696, 4536, 7030, 46310, 73188, 485914, 778946, 5202690, 8430992, 56579196, 92470194, 622945970, 1025114180, 6927964218, 11465054942, 77692142980, 129180293184, 877395996200, 1464716085664, 9968202968958, 16698145444260, 113837957337750, 191264779292430
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- Jean-François Alcover, Table of n, a(n) for n = 1..45
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
A217310
The number of meandering curves of order n, with only one extremity covered by its arcs.
Original entry on oeis.org
0, 0, 4, 4, 32, 38, 264, 342, 2288, 3134, 20740, 29526, 194916, 285458, 1885840, 2822310, 18682016, 28440970, 188717116, 291294678, 1937706144, 3025232480, 20173268632, 31797822936, 212530874156, 337731551446, 2262235585956, 3620119437762, 24297593488468
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
A217318
The number of meandering curves of order n, with both extremity covered by its arcs.
Original entry on oeis.org
0, 0, 0, 1, 10, 20, 156, 273, 1986, 3358, 23742, 39736, 277178, 462794, 3205896, 5355743, 36963722, 61856394, 426075994, 714515312, 4916833424, 8263479072, 56840484232, 95733461792, 658460090994, 1111253958664, 7644360501390, 12925362323004, 88938175307354
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
A208357
Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with central 1-1 cut.
Original entry on oeis.org
4, 64, 1764, 68644, 3341584, 190992400, 12310790116, 871343837764, 66469126179600, 5391179227622500, 460213149486493456, 41024422751464102500, 3795407861954983718544, 362631040029370613957184, 35638591665642822414493156, 3590789985613539065908070116, 369893506453438150061450367376
Offset: 1
- Antonios Panayotopoulos and Panos Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- Antonios Panayotopoulos and Panayiotis Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- Antonios Panayotopoulos and Panos Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
- Antonios Panayotopoulos and Panos Tsikouras, Meanders and Motzkin Words, J. Integer Seq., Vol. 7 (2004), Article 04.1.2.
- Antonios Panayotopoulos and Panayiotis Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
A207851
Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with only central 1-1 cut (no other 1-1 cuts).
Original entry on oeis.org
4, 16, 324, 12100, 595984, 35236096, 2363709924, 174221090404, 13815880848784, 1161868621405636, 102544273501721104, 9424551852935116804, 896612457556434503824, 87881363502264179831824, 8840846163309028336017124
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
- Panayotis Vlamos, Table of n, a(n) for n = 1..22
- Iwan Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- A. Panayotopoulos and P. Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
A203019
Number of elevated peakless Motzkin paths.
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199
Offset: 0
G.f. = x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 17*x^8 + 37*x^9 + ...
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
- Muniru A Asiru, Table of n, a(n) for n = 0..300
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- I. Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117 (1993) p. 232.
- A. Panayotopoulos and P. Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
-
List([0..40],n->Sum([0..Int((n-1)/2)],m->Binomial(2*m+1,m)*Sum([0..n-2*m-2],k->(Binomial(k,n-2*m-k-2)*Binomial(2*m+k,k)*(-1)^(n-k))/(2*m+1)))); # Muniru A Asiru, Aug 13 2018
-
terms = 34;
A[] = 0; Do[A[x] = x (x - A[x] / (A[x] - 1)) + O[x]^terms, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Michael Somos *)
Table[Sum[Binomial[2*m + 1, m]*Sum[(Binomial[k, n - 2*m - k - 2]* Binomial[2*m + k, k]*(-1)^(n - k))/(2*m + 1), {k, 0, n - 2*m - 2}], {m, 0, Floor[(n - 1)/2]}], {n, 0, 50}] (* G. C. Greubel, Aug 12 2018 *)
-
a(n):=sum((binomial(2*m+1,m)*sum(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k),k,0,n-2*m-2))/(2*m+1),m,0,(n-1)/2); /* Vladimir Kruchinin, Mar 12 2016 */
-
{a(n) = local(A); A = O(x); for( k=1, ceil(n / 3), A = x^2 / (1 - x / (1 - A))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
A192927
Number of meanders of order n, with 1-1 cut.
Original entry on oeis.org
0, 0, 4, 24, 152, 1056, 7884, 62336, 516060, 4435888, 39338456, 358164768, 3335087752, 31663393880, 305740631660, 2996450625216, 29756512979124, 298991371001192, 3036071594865808, 31123847225593944, 321822051245586716, 3353854189297573504, 35203483037473883368, 371948773494408980616, 3953755503217954761364
Offset: 1
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algebrique. Laboratoire Bordelais de Recherche Informatique, Universite Bordeaux I, 1991, pp. 287-303.
- Iwan Jensen, Enumeration of plane meander, arXiv:cond-mat/9910313v1 [cond-mat.stat-mech], 1999.
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
Comments