cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Panayotis Vlamos

Panayotis Vlamos's wiki page.

Panayotis Vlamos has authored 8 sequences.

A227167 The number of meandering curves of order n.

Original entry on oeis.org

1, 1, 6, 8, 50, 72, 462, 696, 4536, 7030, 46310, 73188, 485914, 778946, 5202690, 8430992, 56579196, 92470194, 622945970, 1025114180, 6927964218, 11465054942, 77692142980, 129180293184, 877395996200, 1464716085664, 9968202968958, 16698145444260, 113837957337750, 191264779292430
Offset: 1

Keywords

Comments

A meandering curve of order n is a continuous curve which does not intersect itself yet intersects a horizontal line n times.
The set of meandering curves of order n is partitioned into the following three classes: curves with no extremities (A005316), curves with only one extremity (A217310), and curves with both extremities covered by their arcs (A217318).

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.

Programs

Formula

a(n) = A000136(n) if n is odd and a(n) = (1/2)*A000136(n) if n is even.
a(n) = A217310(n) + A217318(n) + A005316(n). - Andrew Howroyd, Dec 07 2015

A217310 The number of meandering curves of order n, with only one extremity covered by its arcs.

Original entry on oeis.org

0, 0, 4, 4, 32, 38, 264, 342, 2288, 3134, 20740, 29526, 194916, 285458, 1885840, 2822310, 18682016, 28440970, 188717116, 291294678, 1937706144, 3025232480, 20173268632, 31797822936, 212530874156, 337731551446, 2262235585956, 3620119437762, 24297593488468
Offset: 1

Author

Panayotis Vlamos, Antonios Panayotopoulos, Georgia Theocharopoulou, Mar 17 2013

Keywords

Comments

A meandering curve of order n is a continuous curve which does not intersect itself yet intersects a horizontal line n times.

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.

Crossrefs

Cf. A005315.

Formula

a(n) = A223093(n) * A000034(n). - Andrew Howroyd, Dec 06 2015

A217318 The number of meandering curves of order n, with both extremity covered by its arcs.

Original entry on oeis.org

0, 0, 0, 1, 10, 20, 156, 273, 1986, 3358, 23742, 39736, 277178, 462794, 3205896, 5355743, 36963722, 61856394, 426075994, 714515312, 4916833424, 8263479072, 56840484232, 95733461792, 658460090994, 1111253958664, 7644360501390, 12925362323004, 88938175307354
Offset: 1

Author

Panayotis Vlamos, Antonios Panayotopoulos, and Georgia Theocharopoulou, Mar 18 2013

Keywords

Comments

A meandering curve of order n is a continuous curve which does not intersect itself yet intersects a horizontal line n times.

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.

Crossrefs

Cf. A005315.

Formula

a(n) = A223095(n) * A000034(n) / 2. - Andrew Howroyd, Dec 06 2015

A208358 Number of meanders of order n without 1-1 cuts.

Original entry on oeis.org

1, 2, 4, 18, 110, 772, 5936, 48618, 417398, 3716972, 34086194, 320225348, 3069943298, 29943487732, 296447910268, 2973356043818, 30166687749922, 309197338572932, 3198206243665998, 33353864893990660, 350443763627186256, 3707087785160487888, 39458245623693926384, 422389058260155207568
Offset: 1

Author

Panayotis Vlamos, Feb 25 2012

Keywords

References

  • S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algebrique. Laboratoire Bordelais de Recherche Informatique, Universite Bordeaux I, 1991, pp. 287-303.

Crossrefs

Formula

a(n) = A005315(n) - A192927(n).

A208357 Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with central 1-1 cut.

Original entry on oeis.org

4, 64, 1764, 68644, 3341584, 190992400, 12310790116, 871343837764, 66469126179600, 5391179227622500, 460213149486493456, 41024422751464102500, 3795407861954983718544, 362631040029370613957184, 35638591665642822414493156, 3590789985613539065908070116, 369893506453438150061450367376
Offset: 1

Author

Keywords

References

  • Antonios Panayotopoulos and Panos Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
  • Antonios Panayotopoulos and Panayiotis Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.

Crossrefs

Formula

a(n) = A005315(n+1)^2.

Extensions

More terms using the data at A005315 added by Amiram Eldar, Jun 09 2024

A207851 Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with only central 1-1 cut (no other 1-1 cuts).

Original entry on oeis.org

4, 16, 324, 12100, 595984, 35236096, 2363709924, 174221090404, 13815880848784, 1161868621405636, 102544273501721104, 9424551852935116804, 896612457556434503824, 87881363502264179831824, 8840846163309028336017124
Offset: 1

Author

Keywords

Comments

Central cut is a 1-1 cut at the center of the meander (the i-line is for i=n).

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
  • A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.

Crossrefs

A203019 Number of elevated peakless Motzkin paths.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199
Offset: 0

Author

Keywords

Comments

Essentially the same as A004148: a(0)=a(1)=0 and a(n) = A004148(n-2) for n>=2.

Examples

			G.f. = x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 17*x^8 + 37*x^9 + ...
		

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
  • A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.

Programs

  • GAP
    List([0..40],n->Sum([0..Int((n-1)/2)],m->Binomial(2*m+1,m)*Sum([0..n-2*m-2],k->(Binomial(k,n-2*m-k-2)*Binomial(2*m+k,k)*(-1)^(n-k))/(2*m+1)))); # Muniru A Asiru, Aug 13 2018
  • Mathematica
    terms = 34;
    A[] = 0; Do[A[x] = x (x - A[x] / (A[x] - 1)) + O[x]^terms, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Michael Somos *)
    Table[Sum[Binomial[2*m + 1, m]*Sum[(Binomial[k, n - 2*m - k - 2]* Binomial[2*m + k, k]*(-1)^(n - k))/(2*m + 1), {k, 0, n - 2*m - 2}], {m, 0, Floor[(n - 1)/2]}], {n, 0, 50}] (* G. C. Greubel, Aug 12 2018 *)
  • Maxima
    a(n):=sum((binomial(2*m+1,m)*sum(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k),k,0,n-2*m-2))/(2*m+1),m,0,(n-1)/2); /* Vladimir Kruchinin, Mar 12 2016 */
    
  • PARI
    {a(n) = local(A); A = O(x); for( k=1, ceil(n / 3), A = x^2 / (1 - x / (1 - A))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
    

Formula

G.f.: x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / ...)))))). - Michael Somos, May 12 2012
G.f. A(x) =: y satisfies y / x = x + y / (1 - y). - Michael Somos, Jan 31 2014
G.f. A(x) =: y satisfies y = x^2 + (x - x^2)*y + y*y. - Michael Somos, Jan 31 2014
Given g.f. A(x), then B(x) = A(x)/x satisfies B(-B(-x)) = x. - Michael Somos, Jan 31 2014
a(n) = Sum_{m=0..(n-1)/2}((binomial(2*m+1,m)*Sum_{k=0..n-2*m-2}(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k)))/(2*m+1)). - Vladimir Kruchinin, Mar 12 2016
a(n) ~ 5^(1/4) * phi^(2*n - 2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
D-finite with recurrence n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 25 2023

A192927 Number of meanders of order n, with 1-1 cut.

Original entry on oeis.org

0, 0, 4, 24, 152, 1056, 7884, 62336, 516060, 4435888, 39338456, 358164768, 3335087752, 31663393880, 305740631660, 2996450625216, 29756512979124, 298991371001192, 3036071594865808, 31123847225593944, 321822051245586716, 3353854189297573504, 35203483037473883368, 371948773494408980616, 3953755503217954761364
Offset: 1

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algebrique. Laboratoire Bordelais de Recherche Informatique, Universite Bordeaux I, 1991, pp. 287-303.