cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192951 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 3, 9, 20, 40, 74, 131, 225, 379, 630, 1038, 1700, 2773, 4511, 7325, 11880, 19252, 31182, 50487, 81725, 132271, 214058, 346394, 560520, 906985, 1467579, 2374641, 3842300, 6217024, 10059410, 16276523, 26336025, 42612643, 68948766
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 3n - 1, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.
...
The list of examples at A192744 is extended here; the recurrence is given by p(n,x) = x*p(n-1,x) + v(n), with p(0,x)=1, and the reduction of p(n,x) by x^2 -> x+1 is represented by u1 + u2*x:
...
If v(n)= n, then u1=A001595, u2=A104161.
If v(n)= n-1, then u1=A001610, u2=A066982.
If v(n)= 3n-1, then u1=A171516, u2=A192951.
If v(n)= 3n-2, then u1=A192746, u2=A192952.
If v(n)= 2n-1, then u1=A111314, u2=A192953.
If v(n)= n^2, then u1=A192954, u2=A192955.
If v(n)= -1+n^2, then u1=A192956, u2=A192957.
If v(n)= 1+n^2, then u1=A192953, u2=A192389.
If v(n)= -2+n^2, then u1=A192958, u2=A192959.
If v(n)= 2+n^2, then u1=A192960, u2=A192961.
If v(n)= n+n^2, then u1=A192962, u2=A192963.
If v(n)= -n+n^2, then u1=A192964, u2=A192965.
If v(n)= n(n+1)/2, then u1=A030119, u2=A192966.
If v(n)= n(n-1)/2, then u1=A192967, u2=A192968.
If v(n)= n(n+3)/2, then u1=A192969, u2=A192970.
If v(n)= 2n^2, then u1=A192971, u2=A192972.
If v(n)= 1+2n^2, then u1=A192973, u2=A192974.
If v(n)= -1+2n^2, then u1=A192975, u2=A192976.
If v(n)= 1+n+n^2, then u1=A027181, u2=A192978.
If v(n)= 1-n+n^2, then u1=A192979, u2=A192980.
If v(n)= (n+1)^2, then u1=A001891, u2=A053808.
If v(n)= (n-1)^2, then u1=A192981, u2=A192982.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+4)+2*F(n+2)-(3*n+5)); # G. C. Greubel, Jul 12 2019
  • Magma
    I:=[0, 1, 3, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-1*Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Magma
    F:=Fibonacci; [F(n+4)+2*F(n+2)-(3*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] + 3n - 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A171516 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192951 *)
    (* Additional programs *)
    LinearRecurrence[{3,-2,-1,1},{0,1,3,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
    With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-(3*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;3;9])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+4)+2*f(n+2)-(3*n+5)) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    f=fibonacci; [f(n+4)+2*f(n+2)-(3*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From Bruno Berselli, Nov 16 2011: (Start)
G.f.: x*(1+2*x^2)/((1-x)^2*(1 - x - x^2)).
a(n) = ((25+13*t)*(1+t)^n + (25-13*t)*(1-t)^n)/(10*2^n) - 3*n - 5 = A000285(n+2) - 3*n - 5 where t=sqrt(5). (End)
a(n) = Fibonacci(n+4) + 2*Fibonacci(n+2) - (3*n+5). - G. C. Greubel, Jul 12 2019