cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192967 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

1, 0, 2, 4, 9, 17, 31, 54, 92, 154, 255, 419, 685, 1116, 1814, 2944, 4773, 7733, 12523, 20274, 32816, 53110, 85947, 139079, 225049, 364152, 589226, 953404, 1542657, 2496089, 4038775, 6534894, 10573700, 17108626, 27682359, 44791019, 72473413, 117264468
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + n(n-1)/2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    List([0..40], n-> 3*Fibonacci(n+1) -n-2); # G. C. Greubel, Jul 11 2019
  • Magma
    I:=[1, 0, 2, 4]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Magma
    [3*Fibonacci(n+1) -n-2: n in [0..40]]; // G. C. Greubel, Jul 11 2019
    
  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] + n*(n-1)/2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192967 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192968 *)
    LinearRecurrence[{3,-2,-1,1}, {1,0,2,4}, 41] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
    Table[3*Fibonacci[n+1] -n-2, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    vector(40, n, n--; f=fibonacci; 3*f(n+1)-n-2) \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    [3*fibonacci(n+1) -n-2 for n in (0..40)] # G. C. Greubel, Jul 11 2019
    

Formula

a(0)=1, a(1)=0, for n > 1, a(n) = a(n-1) + a(n-2) + n - 1. - Alex Ratushnyak, May 10 2012
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 -3*x +4*x^2 -x^3)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(n) = 3*Fibonacci(n+1) - n - 2. - G. C. Greubel, Jul 11 2019