A192974 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 4, 14, 37, 84, 172, 329, 600, 1058, 1821, 3080, 5144, 8513, 13996, 22902, 37349, 60764, 98692, 160105, 259520, 420426, 680829, 1102224, 1784112, 2887489, 4672852, 7561694, 12236005, 19799268, 32036956, 51838025, 83876904, 135716978
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+6)+3*F(n+4) -(2*n^2+8*n+17)); # G. C. Greubel, Jul 24 2019
-
Magma
[Fibonacci(n+7)+Lucas(n+3)-2*n*(n+4)-17: n in [0..40]]; // Vincenzo Librandi, Jul 15 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + 2*n^2 +1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192973 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192974 *) (* Additional programs *) Table[Fibonacci[n+7] +LucasL[n+3] -2n(n+4) -17, {n,0,40}] (* Vincenzo Librandi, Jul 15 2019 *)
-
PARI
a(n)=fibonacci(n+7) + fibonacci(2*n+6)/fibonacci(n+3) - 2*n*(n+4) - 17 \\ Richard N. Smith, Jul 14 2019
-
Sage
f=fibonacci; [f(n+6)+3*f(n+4) -(2*n^2+8*n+17) for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1+3*x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014
a(n) = Fibonacci(n+7) + Lucas(n+3) - 2*n*(n+4) - 17. - Ehren Metcalfe, Jul 14 2019
Comments