A193068 Generating primitive Pythagorean triangles by using (n, n+1) gives perimeters for each n. This sequence lists the sum of these perimeters for each n triangles.
12, 42, 98, 188, 320, 502, 742, 1048, 1428, 1890, 2442, 3092, 3848, 4718, 5710, 6832, 8092, 9498, 11058, 12780, 14672, 16742, 18998, 21448, 24100, 26962, 30042, 33348, 36888, 40670, 44702, 48992, 53548, 58378, 63490, 68892, 74592, 80598, 86918, 93560
Offset: 1
Examples
The perimeters of the first five triangles produced by pairs (1,2), (2,3), (3,4), (4,5), (5,6) are in order 12, 30, 56, 90, 132 with sum 320. From the formula, a(5) = 5*(4*5^2 + 15*5 + 17)/3 = 320.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[12, 42, 98, 188]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
-
Mathematica
CoefficientList[Series[(2*(6-3*x+x^2))/((x-1)^4),{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *) LinearRecurrence[{4,-6,4,-1},{12,42,98,188},40] (* Harvey P. Dale, Oct 29 2022 *)
Formula
a(n) = n*(4*n^2 + 15*n + 17)/3.
G.f.: ( 2*x*(6-3*x+x^2) ) / ( (x-1)^4 ). - R. J. Mathar, Aug 23 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = 2*(A002412(n+1) - 1). - Hugo Pfoertner, Oct 22 2024
Comments