cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193068 Generating primitive Pythagorean triangles by using (n, n+1) gives perimeters for each n. This sequence lists the sum of these perimeters for each n triangles.

Original entry on oeis.org

12, 42, 98, 188, 320, 502, 742, 1048, 1428, 1890, 2442, 3092, 3848, 4718, 5710, 6832, 8092, 9498, 11058, 12780, 14672, 16742, 18998, 21448, 24100, 26962, 30042, 33348, 36888, 40670, 44702, 48992, 53548, 58378, 63490, 68892, 74592, 80598, 86918, 93560
Offset: 1

Views

Author

J. M. Bergot, Jul 15 2011

Keywords

Comments

Partial sums of A002939 starting at A002939(2). - R. J. Mathar, Aug 23 2011

Examples

			The perimeters of the first five triangles produced by pairs (1,2), (2,3), (3,4), (4,5), (5,6) are in order 12, 30, 56, 90, 132 with sum 320.
From the formula, a(5) = 5*(4*5^2 + 15*5 + 17)/3 = 320.
		

Crossrefs

Cf. A083374 (sum of areas for the first n triangles), A002412.

Programs

  • Magma
    I:=[12, 42, 98, 188]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    CoefficientList[Series[(2*(6-3*x+x^2))/((x-1)^4),{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{12,42,98,188},40] (* Harvey P. Dale, Oct 29 2022 *)

Formula

a(n) = n*(4*n^2 + 15*n + 17)/3.
G.f.: ( 2*x*(6-3*x+x^2) ) / ( (x-1)^4 ). - R. J. Mathar, Aug 23 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = 2*(A002412(n+1) - 1). - Hugo Pfoertner, Oct 22 2024