A193132 a(n) = 3n*4^(2n-1).
12, 384, 9216, 196608, 3932160, 75497472, 1409286144, 25769803776, 463856467968, 8246337208320, 145135534866432, 2533274790395904, 43910096366862336, 756604737398243328, 12970366926827028480, 221360928884514619392, 3763135791036748529664
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Eric Weisstein's World of Mathematics, Crossed Prism Graph.
- Eric Weisstein's World of Mathematics, Spanning Tree.
- Index entries for sequences related to trees.
- Index entries for linear recurrences with constant coefficients, signature (32,-256).
Crossrefs
Cf. A267796.
Programs
-
Magma
[3*n*4^(2*n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2011
-
Mathematica
LinearRecurrence[{32,-256},{12,384},20] (* Harvey P. Dale, Apr 08 2015 *)
-
PARI
a(n)=3*n<<(4*n-2) \\ Charles R Greathouse IV, Jul 30 2011
Formula
O.g.f.: 12*x/(16*x-1)^2.
a(n) = 32*a(n-1) - 256*a(n-2). - Harvey P. Dale, Apr 08 2015
From Amiram Eldar, Apr 17 2022: (Start)
a(n) = 3*A267796(n-1).
Sum_{n>=1} 1/a(n) = (4/3)*log(16/15).
Sum_{n>=1} (-1)^(n+1)/a(n) = (4/3)*log(17/16). (End)
Comments