A193142 Primes which are the sum of 5 distinct positive squares.
79, 103, 127, 131, 139, 151, 157, 163, 167, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433
Offset: 1
Keywords
Examples
79=1^2+2^2+3^2+4^2+7^2, 103=2^2+3^2+4^2+5^2+7^2, 127=1^2+2^2+3^2+7^2+8^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst = {}; Do[Do[Do[Do[Do[p = a^2 + b^2 + c^2 + d^2 + e^2; If[PrimeQ[p], AppendTo[lst, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 20}]; OEISTrim[Take[Union[lst], 80]] With[{upto=500},Select[Union[Total/@Subsets[Range[Ceiling[Sqrt[upto-30]]]^2, {5}]],PrimeQ[#]&<=upto&]] (* Harvey P. Dale, Jun 05 2016 *)
-
PARI
upto(lim)=my(v=List(),tb,tc,td,te);for(a=6,sqrt(lim),for(b=4,min(a-1,sqrt(lim-a^2)),tb=a^2+b^2;for(c=3,min(b-1,sqrt(lim-tb)),tc=tb+c^2;for(d=2,min(c-1,sqrt(lim-tc)),td=tc+d^2;forstep(e=1+td%2,d-1,2,te=td+e^2;if(te>lim,break);if(isprime(te),listput(v,te)))))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jul 17 2011
Formula
Conjecture: a(n) = prime(n+32) for n > 13. [Charles R Greathouse IV, Jul 17 2011]
Comments