A193161 E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).
1, 1, 3, 17, 152, 1944, 33404, 738212, 20316288, 679237248, 27050017152, 1262790237312, 68193683598336, 4212508572109824, 294822473048043264, 23184842446161993984, 2033884583922970558464, 197767395237549512097792, 21194678534706844531458048
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ... Related expansions: A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ... A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ... Also, a(n) appears in the expansion: B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ... where log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..293
- F. Cellarosi and Ya. G. Sinai, The Möbius function and statistical mechanics, Bull. Math. Sci., 2011.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-i)*binomial(n-1, i-1)/i, i=1..n)) end: a:= n-> b(n)*n!: seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
Mathematica
a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *) a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *) Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
PARI
{a(n)=local(A=1+x,B);for(i=1,n,B=subst(A,x,x/(1-x+x*O(x^n)))/(1-x);A=1+intformal((B-A)/x));n!*polcoeff(A,n)}
-
PARI
{a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(k=0,n-1,binomial(n,k)*a(k)/k!)))}
-
PARI
{a(n)=n!^2*polcoeff(exp(sum(m=1,n,x^m/(m*m!))+x*O(x^n)),n)}
Comments