cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A193194 G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n * (1+x)^(n*(n+1)/2), where g.f. A(x) = Sum_{n>=1} a(n)*x^n.

Original entry on oeis.org

1, 1, 1, 3, 20, 262, 5367, 158413, 6318384, 326575077, 21199737973, 1687053244236, 161418184139781, 18276066372054109, 2416167457088427950, 368773198369779785338, 64348161941454274119082, 12728047101293068225626576, 2832615019902477894227329544
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2011

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 20*x^5 + 262*x^6 + 5367*x^7 +...
where
A(A(x)) = x*(1+x) + x^2*(1+x)^3 + x^3*(1+x)^6 + 3*x^4*(1+x)^10 + 20*x^5*(1+x)^15 + 262*x^6*(1+x)^21 +...+ a(n)*x^n*(1+x)^(n*(n+1)/2) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 4*x^3 + 12*x^4 + 66*x^5 + 717*x^6 + 13344*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1],F=x,G=x);for(i=1,n,A=concat(A,0);F=x*Ser(A);
    G=sum(m=1,#A-1,A[m]*x^m*(1+x+x*O(x^#A))^(m*(m+1)/2));
    A[#A]=Vec(G)[#A]-Vec(subst(F,x,F))[#A]);if(n<1,0,A[n])}

A193192 G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n * (1+x)^(n^2), where g.f. A(x) = Sum_{n>=1} a(n)*x^n.

Original entry on oeis.org

1, 1, 2, 13, 184, 4725, 188596, 10765407, 829780846, 82924007284, 10420182259194, 1607406366386249, 298555458341808338, 65711158773953092780, 16910051487116790543954, 5030141451818448773854244, 1712632076858599057432066794
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2011

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 13*x^4 + 184*x^5 + 4725*x^6 +...
where
A(A(x)) = x*(1+x) + x^2*(1+x)^4 + 2*x^3*(1+x)^9 + 13*x^4*(1+x)^16 + 184*x^5*(1+x)^25 + 4725*x^6*(1+x)^36 +...+ a(n)*x^n*(1+x)^(n^2) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 6*x^3 + 37*x^4 + 468*x^5 + 11054*x^6 + 421428*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1],F=x,G=x);for(i=1,n,A=concat(A,0);F=x*Ser(A);
    G=sum(m=1,#A-1,A[m]*x^m*(1+x+x*O(x^#A))^(m^2));
    A[#A]=Vec(G)[#A]-Vec(subst(F,x,F))[#A]);if(n<1,0,A[n])}

A193195 G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n / (1-x)^(n*(n+1)/2), where g.f. A(x) = Sum_{n>=1} a(n)*x^n.

Original entry on oeis.org

1, 1, 2, 8, 63, 866, 18444, 559083, 22773527, 1197061138, 78782852673, 6341384941543, 612605031308910, 69931195961966196, 9310803519433216321, 1429869869684956113511, 250857267705012344767575, 49858270430813771746874366, 11143529422156562195864991584
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2011

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 8*x^4 + 63*x^5 + 866*x^6 + 18444*x^7 +...
where
A(A(x)) = x/(1-x) + x^2/(1-x)^3 + 2*x^3/(1-x)^6 + 8*x^4/(1-x)^10 + 63*x^5/(1-x)^15 + 866*x^6/(1-x)^21 +...+ a(n)*x^n/(1-x)^(n*(n+1)/2) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 6*x^3 + 27*x^4 + 196*x^5 + 2379*x^6 + 46224*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1],F=x,G=x);for(i=1,n,A=concat(A,0);F=x*Ser(A);
    G=sum(m=1,#A-1,A[m]*x^m/(1-x+x*O(x^#A))^(m*(m+1)/2));
    A[#A]=Vec(G)[#A]-Vec(subst(F,x,F))[#A]);if(n<1,0,A[n])}

A182042 Triangle T(n,k), read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, 0, -3/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 3, 0, 6, 9, 0, 9, 27, 27, 0, 12, 54, 108, 81, 0, 15, 90, 270, 405, 243, 0, 18, 135, 540, 1215, 1458, 729, 0, 21, 189, 945, 2835, 5103, 5103, 2187, 0, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 0, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2012

Keywords

Comments

Row sums are 4^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+3*x)^n - 1 + 0^n.

Examples

			Triangle begins:
  1;
  0,  3;
  0,  6,   9;
  0,  9,  27,  27;
  0, 12,  54, 108,   81;
  0, 15,  90, 270,  405,  243;
  0, 18, 135, 540, 1215, 1458,  729;
  0, 21, 189, 945, 2835, 5103, 5103, 2187;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=n then 3^n
        elif k=0 then 0
        else binomial(n,k)*3^k
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if (k==0, 1, binomial(n,k)*3^k);
    matrix(10, 10, n, k, T(n-1,k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 3^n
        elif (k==0): return 0
        else: return binomial(n,k)*3^k
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020

Formula

T(n,0) = 0^n; T(n,k) = binomial(n,k)*3^k for k > 0.
G.f.: (1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2).
T(n,k) = 2*T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k) -3*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 3, T(2,1) = 6, T(2,2) = 9 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A206735(n,k)*3^k.
T(n,k) = A013610(n,k) - A073424(n,k).

Extensions

a(48) corrected by Georg Fischer, Feb 17 2020
Showing 1-4 of 4 results.