A193253 Great rhombicosidodecahedron with faces of centered polygons.
1, 183, 905, 2527, 5409, 9911, 16393, 25215, 36737, 51319, 69321, 91103, 117025, 147447, 182729, 223231, 269313, 321335, 379657, 444639, 516641, 596023, 683145, 778367, 882049, 994551, 1116233, 1247455, 1388577, 1539959, 1701961, 1874943, 2059265, 2255287
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000.
- OEIS Wiki, (Centered_polygons) pyramidal numbers.
- Eric W. Weisstein, MathWorld: Great Rhombicosidodecahedron.
- Wikipedia, Tetrahedral number.
- Wikipedia, Triangular number.
- Wikipedia, Centered polygonal number.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Excel
=60*ROW()^3-90*ROW()^2+32*ROW()-1 fill down to desired size.
-
Magma
[60*n^3-90*n^2+32*n-1: n in [1..40]] // Vincenzo Librandi, Feb 18 2012
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {1, 183, 905, 2527}, 50] (* Vincenzo Librandi, Feb 18 2012 *) a[n_]:=60*n^3 - 90*n^2 + 32*n - 1 ; Array[a, 50] (* or *) CoefficientList[Series[(1 + x)*(1 + 178*x + x^2)/(1 - x)^4 , {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
-
PARI
a(n)=60*n^3-90*n^2+32*n-1 \\ Charles R Greathouse IV, Feb 12 2012
Formula
a(n) = 60*n^3 - 90*n^2 + 32*n - 1.
G.f.: x*(1 + 179*x + 179*x^2 + x^3)/(1-x)^4 = x*(1+x)*(1 + 178*x + x^2)/(1-x)^4. - Colin Barker, Feb 12 2012
Comments