cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193253 Great rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 183, 905, 2527, 5409, 9911, 16393, 25215, 36737, 51319, 69321, 91103, 117025, 147447, 182729, 223231, 269313, 321335, 379657, 444639, 516641, 596023, 683145, 778367, 882049, 994551, 1116233, 1247455, 1388577, 1539959, 1701961, 1874943, 2059265, 2255287
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of n-2 edges and n-1 vertices to complete the centered polygon of each face.

Crossrefs

Cf. A001844 (centered squares), A062786 (centered decagons), and A003215 (centered hexagons).

Programs

  • Excel
    =60*ROW()^3-90*ROW()^2+32*ROW()-1 fill down  to desired size.
    
  • Magma
    [60*n^3-90*n^2+32*n-1: n in [1..40]] // Vincenzo Librandi, Feb 18 2012
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 183, 905, 2527}, 50] (* Vincenzo Librandi, Feb 18 2012 *)
    a[n_]:=60*n^3 - 90*n^2 + 32*n - 1 ; Array[a, 50] (* or *)
    CoefficientList[Series[(1 + x)*(1 + 178*x + x^2)/(1 - x)^4 , {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    a(n)=60*n^3-90*n^2+32*n-1 \\ Charles R Greathouse IV, Feb 12 2012
    

Formula

a(n) = 60*n^3 - 90*n^2 + 32*n - 1.
G.f.: x*(1 + 179*x + 179*x^2 + x^3)/(1-x)^4 = x*(1+x)*(1 + 178*x + x^2)/(1-x)^4. - Colin Barker, Feb 12 2012