A193283 Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.
1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1
Examples
4 example graphs: o / \ o o---o / \ / \ / \ o o---o o---o---o / \ / \ / \ / \ / \ / \ o o---o o---o---o o---o---o---o n: 1 2 3 4 Vertices: 1 3 6 10 Edges: 0 3 9 18 The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0]. Triangle T(n,k) begins: 1, 0; 1, -3, 2, 0; 1, -9, 32, -56, 48, -16, 0; 1, -18, 144, -672, 2016, -4031, 5368, ... 1, -30, 419, -3612, 21477, -93207, 304555, ... 1, -45, 965, -13115, 126720, -925528, 5303300, ... ...
Links
- Alois P. Heinz, Rows n = 1..13, flattened
- Wikipedia, Chromatic Polynomial
- Wikipedia, Triangular grid graph
Comments