A193347 Number of even divisors of tau(n).
0, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 3, 0, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 0, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 0, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 2, 1, 3
Offset: 1
Keywords
Examples
a(24) = 3 because tau(24) = 8 and the 3 even divisors are {2, 4, 8}.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}]
-
PARI
a(n)=sumdiv(sigma(n,0),d,(1-d%2));
Formula
From Amiram Eldar, Jan 27 2025: (Start)
a(n) = 0 if and only if n is a square.