cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193355 Decimal expansion of Pi/(2 + 2*sqrt(2)).

Original entry on oeis.org

6, 5, 0, 6, 4, 5, 1, 4, 2, 2, 8, 4, 2, 8, 6, 5, 0, 4, 2, 7, 6, 6, 1, 8, 8, 0, 3, 3, 9, 0, 5, 9, 5, 4, 0, 7, 2, 0, 8, 7, 2, 6, 1, 4, 5, 0, 0, 0, 2, 9, 2, 2, 0, 1, 0, 5, 5, 2, 2, 5, 5, 0, 7, 3, 2, 4, 3, 0, 9, 1, 9, 3, 4, 0, 6, 6, 3, 2, 4, 5, 5, 9, 7, 3, 6, 4, 6, 0, 5, 4, 7, 1, 1, 3, 2, 4, 0, 8, 4
Offset: 0

Views

Author

Frank M Jackson, Jul 24 2011

Keywords

Comments

This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a harmonic progression: Pi/(2+2*sqrt(2)) (this sequence), Pi/(2+sqrt(2)) (A193373), Pi/2 (A019669). The angles (in degrees) are approximately 37.279, 52.721, 90. The common difference between the denominators of the harmonic progression is sqrt(2).

Examples

			0.6506451422...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/(2 + 2*Sqrt(2)); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(Pi/(2+2*sqrt(2)),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    N[Pi/(2 + 2*Sqrt[2]), 100]
    RealDigits[Pi/(2 + 2*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Sep 29 2018 *)
  • PARI
    default(realprecision,100); Pi/(2+2*sqrt(2))
    

Formula

Equals Pi/(2+2*sqrt(2)).
Equals Integral_{x=0..Pi/2} cos(x)^2/(1 + sin(x)^2) dx = Integral_{x=0..Pi/2} sin(x)^2/(1 + cos(x)^2) dx. - Amiram Eldar, Aug 16 2020
Equals 4*Sum_{k >= 0} (-1)^k/((4*k + 1)*(4*k + 2)*(4*k + 3)). - Peter Bala, Jul 15 2024
Equals Integral_{x=0..1} sqrt(1 - x^2)/(1 + x^2) dx. - Kritsada Moomuang, Jun 05 2025
Equals A247719 - A019669 = A000796*A268683. - R. J. Mathar, Jul 22 2025