cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193398 Hyper-Wiener index of a benzenoid consisting of a double-step spiral chain of n hexagons (n >= 2, s = 21; see the Gutman et al. reference).

Original entry on oeis.org

215, 636, 1557, 3018, 5555, 8968, 14225, 20790, 30159, 41364, 56525, 74146, 97067, 123168, 156105, 193038, 238535, 288940, 349829, 416634, 496035, 582456, 683777, 793318, 920255, 1056708, 1213245, 1380690, 1571099, 1773904, 2002745, 2245566, 2517687, 2805468
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(3/2)*n^4+12*n^3+(3/2)*n^2*(-1)^n+(73/2)*n^2+6*n*(-1)^n-79*n+(83/4)*(-1)^(n+1)+439/4: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := n -> (3/2)*n^4+12*n^3+(3/2)*n^2*(-1)^n+(73/2)*n^2+6*n*(-1)^n-79*n+(83/4)*(-1)^(n+1)+439/4: seq(a(n), n = 2 .. 35);
  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{215,636,1557,3018,5555,8968,14225,20790},40] (* Harvey P. Dale, Aug 30 2017 *)
  • PARI
    a(n)=(6*n^4+48*n^3+146*n^2-316*n+439+(-1)^n*(6*n^2+24*n-83))/4 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = (6*n^4 + 48*n^3 + 146*n^2 - 316*n + 439 + (-1)^n*(6*n^2 + 24*n - 83))/4.
G.f.: x^2*(215 + 206*x - 145*x^2 - 78*x^3 + 221*x^4 - 126*x^5 - 99*x^6 + 94*x^7)/((1+x)^3*(1-x)^5). - Bruno Berselli, Jul 26 2011

A193399 Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).

Original entry on oeis.org

27, 109, 271, 545, 931, 1493, 2199, 3145, 4267, 5693, 7327, 9329, 11571, 14245, 17191, 20633, 24379, 28685, 33327, 38593, 44227, 50549, 57271, 64745, 72651, 81373, 90559, 100625, 111187, 122693, 134727
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: 4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 end proc: seq(a(n), n = 1 .. 40);
  • PARI
    a(n)=4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = 4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3.
G.f.: x*(27 + 55*x + 26*x^2 + 2*x^3 - 21*x^4 + 7*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011

A193400 Hyper-Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).

Original entry on oeis.org

42, 215, 636, 1513, 2862, 5211, 8352, 13229, 19314, 28063, 38532, 52785, 69366, 91043, 115752, 147061, 182202, 225639, 273804, 332153, 396222, 472555, 555696, 653373, 759042, 881711, 1013652, 1165249, 1327494, 1512243, 1709112, 1931525, 2167626, 2432503, 2712732
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(6*n^4 + 40*n^3 + 114*n^2 + 16*n - 45 + (-1)^n*(6*n^2 +20*n -63))/4: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: (3/2)*n^4+10*n^3+(57/2)*n^2+4*n-45/4+(1/4)*(-1)^n*(6*n^2+20*n-63) end proc: seq(a(n), n = 1 .. 35);
  • PARI
    a(n)=(6*n^4+40*n^3+114*n^2+16*n-45+(-1)^n*(6*n^2+20*n-63))/4 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = ( 6*n^4 +40*n^3 +114*n^2 +16*n -45 +(-1)^n*(6*n^2 +20*n -63) )/4.
G.f.: x*(42+131*x+122*x^2+63*x^3-146*x^4+25*x^5+78*x^6-27*x^7)/((1+x)^3*(1-x)^5). - Bruno Berselli, Jul 27 2011
Showing 1-3 of 3 results.