cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193413 Valley numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 202, 212, 222, 303, 313, 323, 333, 404, 414, 424, 434, 444, 505, 515, 525, 535, 545, 555, 606, 616, 626, 636, 646, 656, 666, 707, 717, 727, 737, 747, 757, 767, 777, 808, 818, 828, 838, 848, 858, 868, 878, 888, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999, 1001
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2011

Keywords

Comments

For n > 10 the structure of digits represents a valley. The first digit is equal to the last digit (1 - 9). The first digits are in nonincreasing order. The last digits are in nondecreasing order. The numbers may have more than one smallest digit. Sequence is infinite.
Superset of crater numbers (A193409) and A193412.
See valley numbers in base 2 (A193414 and A193415).

Examples

			Illustration using 6543333346:
  6 . . . . . . . . 6
  . 5 . . . . . . . .
  . . 4 . . . . . 4 .
  . . . 3 3 3 3 3 . .
		

Crossrefs

Extensions

More terms extended by definition by Jaroslav Krizek, Jul 27 2011

A193409 Crater numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 101, 212, 323, 434, 545, 656, 767, 878, 989, 21012, 32123, 43234, 54345, 65456, 76567, 87678, 98789, 3210123, 4321234, 5432345, 6543456, 7654567, 8765678, 9876789, 432101234, 543212345, 654323456, 765434567, 876545678, 987656789, 54321012345, 65432123456, 76543234567, 87654345678, 98765456789, 6543210123456, 7654321234567, 8765432345678, 9876543456789, 765432101234567, 876543212345678, 987654323456789, 87654321012345678, 98765432123456789, 9876543210123456789
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2011

Keywords

Comments

For n>9 the structure of digits represents a crater. The first and last digit of each term are identical. The first digits are in consecutive decreasing order. The last digits are in consecutive increasing order. The numbers have only one smallest digit. The number of digits is odd. This sequence is finite with 55 terms. The final term is 9876543210123456789.
Finite subset of primes of this sequence: 2, 3, 5, 7, 101, 7654567.
There are 11 - k terms with 2*k - 1 digits. - Omar E. Pol, Aug 04 2011

Examples

			Illustration using a(32)=7654567:
  7  .  .  .  .  .  7
  .  6  .  .  .  6  .
  .  .  5  .  5  .  .
  .  .  .  4  .  .  .
		

Crossrefs

Subset of palindromes (A002113), A193412 and valley numbers (A193413).
Cf. A134810, A134970. - Omar E. Pol, Aug 04 2011

Programs

  • Mathematica
    Flatten[Table[FromDigits/@(Join[Reverse[Rest[#]],#]&/@Partition[ Range[ 0,9],n,1]),{n,10}]] (* Harvey P. Dale, Dec 27 2018 *)
  • Python
    ups = [tuple(range(i, j)) for i in range(10) for j in range(i+1, 11)]
    afull = sorted(int("".join(map(str, u[::-1] + u[1:]))) for u in ups)
    print(afull) # Michael S. Branicky, Aug 02 2022

Extensions

Corrected and extended by Jaroslav Krizek, Jul 27 2011
Showing 1-2 of 2 results.