A193417 Numbers n such that the number of the odd divisors of phi(n) is different from the number of the odd divisors of lambda(n).
63, 91, 117, 126, 133, 171, 182, 189, 217, 234, 247, 252, 259, 266, 273, 275, 279, 301, 315, 333, 341, 342, 351, 364, 378, 387, 399, 403, 427, 434, 441, 451, 455, 468, 469, 481, 494, 504, 511, 513, 518, 532, 546, 549, 550, 553, 558, 559, 567, 585, 589, 602
Offset: 1
Keywords
Examples
63 is in the sequence because phi(63) = 36 with 3 odd divisors {1, 3, 9} and lambda(63) = 6 with only 2 odd divisors {1, 3}.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{d = Divisors[EulerPhi[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 500}]; g[n_] := Block[{e = Divisors[CarmichaelLambda[n]]}, Count[OddQ[e], True]]; Table[g[n], {n, 500}]; a={};Do[If[ f[n] != g[n], AppendTo[a,n]], {n, 500}];a
-
PARI
is(n) = my(cp = eulerphi(n), cn=cp>>valuation(cp,2), cl=lcm(znstar(n)[2])); cl = cl >> valuation(cl, 2); numdiv(cl) != numdiv(cn) \\ David A. Corneth, Feb 18 2019
-
PARI
isA193417(n) = my(v=znstar(n)[2]); (#v<=1) || (v[2]==1<
Jianing Song, Oct 19 2021
Comments