cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193437 Expansion of e.g.f. exp( Sum_{n>=0} x^(3*n+1)/(3*n+1) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 931, 7441, 38017, 507241, 5864761, 43501591, 713059711, 10776989587, 105784464331, 2052437475361, 38263122487681, 469863736958161, 10518597616325617, 232980391759702951, 3446848352553524191, 87385257330831947851
Offset: 0

Views

Author

Paul D. Hanna, Jul 25 2011

Keywords

Comments

Conjecture: a(n) is divisible by 7^floor(n/7) for n>=0.
Conjecture: a(n) is divisible by p^floor(n/p) for prime p == 1 (mod 3).
a(n) is the number of permutations of n elements with a disjoint cycle decomposition in which every cycle length is == 1 (mod 3). - Simon Tatham, Mar 26 2021

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! + 931*x^7/7! +...
where
log(A(x)) = x + x^4/4 + x^7/7 + x^10/10 + x^13/13 + x^16/16 + x^19/19 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/3, 1, 4/3, x^3]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
  • PARI
    {a(n)=n!*polcoeff( exp(sum(m=0,n,x^(3*m+1)/(3*m+1))+x*O(x^n)) ,n)}

Formula

a(n) = a(n-1) + (n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Apr 15 2020
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * (3*k)! * a(n-3*k-1). - Ilya Gutkovskiy, Jul 14 2021
E.g.f.: A(x) = exp(Integral_{z = 0..x} 1/(1-z^3) dz) = (1-x^3)^(1/6)/(1-x)^(1/2) * exp((1/sqrt(3))*arctan(sqrt(3)*x/(2+x))). - Fabian Pereyra, Oct 14 2023

A365969 Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+1) / (5*k+1) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 3684241, 50309281, 369738721, 1926648361, 7980936601, 1335634023361, 27705746752321, 302258931418081, 2283161710263841, 13419441405835201, 2498339829188508481, 70152448708746111961, 1025314852704395518441
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\5, x^(5*k+1)/(5*k+1)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/5)} a(n-5*k-1)/(n-5*k-1)!.
a(0) = a(1) = ... = a(4) = 1; a(n) = a(n-1) + 120 * binomial(n-1,5) * a(n-5).
Showing 1-2 of 2 results.