cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A194508 First coordinate of the (2,3)-Lagrange pair for n.

Original entry on oeis.org

-1, 1, 0, 2, 1, 0, 2, 1, 3, 2, 1, 3, 2, 4, 3, 2, 4, 3, 5, 4, 3, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 8, 7, 6, 8, 7, 9, 8, 7, 9, 8, 10, 9, 8, 10, 9, 11, 10, 9, 11, 10, 12, 11, 10, 12, 11, 13, 12, 11, 13, 12, 14, 13, 12, 14, 13, 15, 14, 13, 15, 14, 16, 15, 14, 16, 15, 17, 16, 15, 17
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2011

Keywords

Comments

Suppose that c and d are relatively prime integers satisfying 1 < c < d. Every integer n has a representation
(1) n = c*x + d*y
where x and y are integers satisfying
(2) |x - y| < d.
Let h = (c-1)*(d-1). If n >= h, there is exactly one pair (x,y) satisfying (1) and (2), and, for this pair, x >= 0 and y >= 0.
For n >= h, write (x,y) as (x(n),y(n)) and call this the (c,d)-Lagrange pair for n. If n > c*d then
(3) x(n) = x(n-c-d) + 1 and
(4) y(n) = y(n-c-d) + 1.
If n < h, then n may have more than one representation satisfying (1) and (2); e.g., 1 = 2*(-3) + 7*1 = 2*4 + 7*(-1). To extend the definition of (c,d)-Lagrange pair by stipulating a particular pair (x(n),y(n)) satisfying (1) and (2) for n < h, we reverse (3) and (4): x(n) = x(n+c+d) - 1 and y(n) = y(n+c+d) - 1 for all integers n. The initial numbers x(1) and y(1) so determined are also the numbers found by the Euclidean algorithm for 1 as a linear combination c*x + d*y.
Examples:
c d x(n) y(n)
- - ------- -------

Examples

			This table shows (x(n),y(n)) for 1 <= n <= 13:
   n      1  2  3  4  5  6  7  8  9 10 11 12 13
  ----   -- -- -- -- -- -- -- -- -- -- -- -- --
  x(n)   -1  1  0  2  1  0  2  1  3  2  1  3  2
  y(n)    1  0  1  0  1  2  1  2  1  2  3  2  3
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Chelsea, 1952, page 47.

Crossrefs

Programs

  • Maple
    A0:= [-1,1,0,2,0]:
    f:= n -> A0[(n-1 mod 5)+1]+floor(n/5):
    map(f, [$1..100]); # Robert Israel, Jul 29 2019
  • Mathematica
    c = 2; d = 3;
    x1 = {-1, 1, 0, 2, 1}; y1 = {1, 0, 1, 0, 1};
    x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
    y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
    Table[x[n], {n, 1, 100}] (* A194508 *)
    Table[y[n], {n, 1, 100}] (* A194509 *)
    r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
    TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
  • PARI
    a(n)=2*n - (3*n+2)\5*3

Formula

From Robert Israel, Jul 29 2019: (Start)
a(n+5) = a(n) + 1.
G.f.: x*(-1+2*x-x^2+2*x^3-x^4)/(1-x-x^5+x^6). (End)
a(n) = 2*n - 3*floor((3*n+2)/5). - Ridouane Oudra, Sep 06 2020
a(n) = n/5 + O(1). - Charles R Greathouse IV, Mar 30 2022

A193512 a(n) = Sum of odd divisors of Omega(n), a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 4, 1, 1, 6, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 4, 1, 4, 1, 6, 1, 1, 4, 4, 1, 4, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 4, 1, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2011

Keywords

Comments

Omega = A001222 is the number of prime divisors of the argument, counted with multiplicity.
a(1) = 0 by convention.

Examples

			a(8) = 4 because Omega(8) = 3 and the sum of the 2 odd divisors {1, 3} is 4.
		

Crossrefs

Programs

Formula

a(1) = 0, for n > 1, a(n) = A000593(A001222(n)).
a(n) + A193511(n) = A290080(n). - Antti Karttunen, Jul 23 2017

Extensions

Description clarified, more terms from Antti Karttunen, Jul 23 2017

A193510 Number of even divisors of Omega(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2011

Keywords

Comments

Omega(n) is the number of prime divisors of n counted with multiplicity, A001222 (also called bigomega(n)).
Records are at 4^A002182(n). [Charles R Greathouse IV, Jul 29 2011]

Examples

			a(16) = 2 because Omega(16) = 4 and the 2 even divisors are {2, 4}.
		

Crossrefs

Programs

Showing 1-3 of 3 results.