A194508 First coordinate of the (2,3)-Lagrange pair for n.
-1, 1, 0, 2, 1, 0, 2, 1, 3, 2, 1, 3, 2, 4, 3, 2, 4, 3, 5, 4, 3, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 8, 7, 6, 8, 7, 9, 8, 7, 9, 8, 10, 9, 8, 10, 9, 11, 10, 9, 11, 10, 12, 11, 10, 12, 11, 13, 12, 11, 13, 12, 14, 13, 12, 14, 13, 15, 14, 13, 15, 14, 16, 15, 14, 16, 15, 17, 16, 15, 17
Offset: 1
Examples
This table shows (x(n),y(n)) for 1 <= n <= 13: n 1 2 3 4 5 6 7 8 9 10 11 12 13 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- x(n) -1 1 0 2 1 0 2 1 3 2 1 3 2 y(n) 1 0 1 0 1 2 1 2 1 2 3 2 3
References
- L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Chelsea, 1952, page 47.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Maple
A0:= [-1,1,0,2,0]: f:= n -> A0[(n-1 mod 5)+1]+floor(n/5): map(f, [$1..100]); # Robert Israel, Jul 29 2019
-
Mathematica
c = 2; d = 3; x1 = {-1, 1, 0, 2, 1}; y1 = {1, 0, 1, 0, 1}; x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] Table[x[n], {n, 1, 100}] (* A194508 *) Table[y[n], {n, 1, 100}] (* A194509 *) r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
-
PARI
a(n)=2*n - (3*n+2)\5*3
Formula
From Robert Israel, Jul 29 2019: (Start)
a(n+5) = a(n) + 1.
G.f.: x*(-1+2*x-x^2+2*x^3-x^4)/(1-x-x^5+x^6). (End)
a(n) = 2*n - 3*floor((3*n+2)/5). - Ridouane Oudra, Sep 06 2020
a(n) = n/5 + O(1). - Charles R Greathouse IV, Mar 30 2022
Comments