A193530 Expansion of (1 - 2*x - 2*x^2 + 3*x^3 + x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)).
1, 1, 2, 3, 7, 13, 31, 66, 159, 363, 876, 2065, 4985, 11915, 28765, 69156, 166957, 402373, 971414, 2343519, 5657755, 13654969, 32966011, 79577190, 192116331, 463786191, 1119678912, 2703086893, 6525829037, 15754607063, 38034986041, 91824246216, 221683340569, 535190123593, 1292063254826
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-2*x^2 +3*x^3+x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)) )); // Vincenzo Librandi, Aug 28 2016 -
Maple
f:=n->if n mod 2 = 0 then (1/4)*(A001333(n-2)+A001333((n-2)/2)+A001333((n-4)/2)+1) else (1/4)*(A001333(n-2)+A001333((n-1)/2)+A001333((n-3)/2)+1); fi; # produces the sequence with a different offset
-
Mathematica
LinearRecurrence[{3,1,-7,3,-1,1,1}, {1,1,2,3,7,13,31}, 40] (* Vincenzo Librandi, Aug 28 2016 *) Table[(2 +LucasL[n, 2] +2*(1+(-1)^n)*Fibonacci[(n+2)/2, 2] + 2*(1-(-1)^n)*Fibonacci[(n+1)/2, 2])/8, {n, 0, 40}] (* G. C. Greubel, May 21 2021 *)
-
Sage
@CachedFunction def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2) def A193530(n): return (1 + Pell(n+1) - Pell(n) + (1 + (-1)^n)*Pell((n+2)/2) + (1-(-1)^n)*Pell((n+1)/2) )/4 [A193530(n) for n in (0..40)] # G. C. Greubel, May 21 2021
Formula
From G. C. Greubel, May 21 2021: (Start)
a(n) = (2 + Q(n) + 2*(1+(-1)^n)*Pell((n+2)/2) + 2*(1-(-1)^n)*Pell((n+1)/2))/8.
a(2*n) = (2 + Q(2*n) + 4*Pell(n+1))/8.
Comments