cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193574 Smallest divisor of sigma(n) that does not divide n.

Original entry on oeis.org

3, 2, 7, 2, 4, 2, 3, 13, 3, 2, 7, 2, 3, 2, 31, 2, 13, 2, 3, 2, 3, 2, 5, 31, 3, 2, 8, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 31, 3, 3, 2, 7, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 127, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 4, 2, 3
Offset: 2

Views

Author

Keywords

Comments

a(n) = 2 iff n is an odd number that is not a perfect square.
From Hartmut F. W. Hoft, May 05 2017: (Start)
(1) Every a(n) > n is a prime: Because of the minimality of a(n), a(n) = u*v with gcd(u,v)=1 leads to the contradiction (u*v)|n. Similarly, a(n)=p^k with p prime an k>1 leads to the contradiction (p^k-1)/(p-1) | n.
(2) n=p^(2*k), k>=1 and 2*k+1 prime, when a(n) = sigma(n) for n>2: Because n having two distinct prime factors implies sigma(n) composite, and if n is an odd power of a prime then 2|sigma(n). Finally, if 2*k+1=u*v with u,v > 1 then sigma(p^(u-1)) divides sigma(p^(2*k)), but not p^(2k), for any prime p, contradicting minimality of a(n). For example, no number sigma(p^8) for any prime p is in the sequence.
(3) The converse of (2) is false since, e.g. sigma(7^2) = 3*19 so that a(7^2) = 3, and sigma(2^10) = 23*89 so that a(2^10) = 23.
(4) Conjecture: a(n) > n implies a(n) = sigma(n); tested through n = 20000000.
(5) Subsequences are: A053183 (sigma(p^2) is prime for prime p), A190527 (sigma(p^4) is prime for prime p), A194257 (sigma(p^6) is prime for prime p), A286301 (sigma(p^10) is prime for prime p)
(6) Subsequences are: A000668 (primes of form 2^p-1), A076481 (primes of form (3^p-1)/2), A086122 (primes of form (5^p-1)/4), A102170 (primes of form (7^p-1)/6), all when p is prime.
(End)
Up to n = 10^6, there are 89 distinct elements. For those n, a(n) is prime. If it's not, it's a power of 2, a power of 3 or a perfect square <= 121. - David A. Corneth, May 10 2017

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a193574 n = head [d | d <- [1..sigma] \\ nDivisors, mod sigma d == 0]
       where nDivisors = a027750_row n
             sigma = sum nDivisors
    -- Reinhard Zumkeller, May 20 2015, Aug 28 2011
  • Mathematica
    a193574[n_] := First[Select[Divisors[DivisorSigma[1, n]], Mod[n, #]!=0&]]
    Map[a193574, Range[2, 80]] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
  • PARI
    a(n)=local(ds);ds=divisors(sigma(n));for(k=2,#ds,if(n%ds[k],return(ds[k])))