cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193576 a(n) = T(n)^3 + n^3 where T(n) is a triangular number.

Original entry on oeis.org

2, 35, 243, 1064, 3500, 9477, 22295, 47168, 91854, 167375, 288827, 476280, 755768, 1160369, 1731375, 2519552, 3586490, 5006043, 6865859, 9269000, 12335652, 16204925, 21036743, 27013824, 34343750, 43261127, 54029835, 66945368, 82337264, 100571625, 122053727
Offset: 1

Views

Author

Vincenzo Librandi, Sep 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(n^3*(n^3+3*n^2+3*n+9)/8): n in [1..40]];
    
  • Python
    def A193576(n): return n**3*(n*(n*(n+3)+3)+9)>>3 # Chai Wah Wu, Jun 12 2025

Formula

a(n) = (n^3*(n^3+3*n^2+3*n+9)/8) = (1/8)*(n+3)*(n^2+3)*n^3.
From Chai Wah Wu, Jun 12 2025: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(x^5 - 28*x^3 - 40*x^2 - 21*x - 2)/(x - 1)^7. (End)
a(n) = A000578(n) + A059827(n). - Alois P. Heinz, Jun 12 2025
E.g.f.: exp(x)*x*(16 + 124*x + 192*x^2 + 98*x^3 + 18*x^4 + x^5)/8. - Stefano Spezia, Jun 13 2025