A193639 Triangle T(n,k) of ways n couples can sit in a row with exactly k of them together.
1, 0, 2, 8, 8, 8, 240, 288, 144, 48, 13824, 15744, 8064, 2304, 384, 1263360, 1401600, 710400, 211200, 38400, 3840, 168422400, 183582720, 92620800, 28108800, 5529600, 691200, 46080, 30865121280, 33223034880, 16717639680, 5148057600, 1061222400, 149022720, 13547520, 645120
Offset: 0
Examples
Triangle begins: 1 0 2 8 8 8 240 288 144 48 13824 15744 8064 2304 384 There are T(3, 2) = 144 ways to arrange three couples in a row so that exactly two of them are together.
Links
- Andrew Woods, Rows n = 0..50 of triangle, flattened
Programs
-
Mathematica
Table[Table[Sum[(-1)^k Binomial[n-i,k](2n-i-k)! 2^(k+i),{k,0,n-i}]*Binomial[n,i],{i,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, Apr 21 2014 *)
Comments