cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A129348 Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.

Original entry on oeis.org

0, 2, 32, 1488, 112512, 12771840, 2036229120, 434469611520, 119619533537280, 41303040523960320, 17481826772405452800, 8902337068174698086400, 5370014079716477003366400, 3786918976243761421064601600, 3087031512410698159166482022400, 2880726660365605475506018320384000
Offset: 1

Views

Author

Eric W. Weisstein, Apr 10 2007

Keywords

Comments

Also, the number of ways (up to rotations) to seat n married couples at a circular table with no spouses next to each other. Cf. A007060, A193639. - Geoffrey Critzer, Feb 09 2014
The cocktail party graph may also be called the n-octahedron, n-orthoplex or n-dimensional cross polytope. - Andrew Howroyd, May 14 2017

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(n-1),
         ((136*n^3-608*n^2+762*n-470) *a(n-1)
           +4*(n-2)*(14*n^2+29*n-193) *a(n-2)
           -80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 09 2014
  • Mathematica
    Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* Geoffrey Critzer, Feb 09 2014 *)
    Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
        n > 1}}], {n, 16}] (* Eric W. Weisstein, Mar 29 2014 *)
  • PARI
    { A129348(n) = sum(m=0,n-1, sum(k=1,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k-1) * 2^(k-1) * ([0,k-1,2*(n-m-k);1,k-2,2*(n-m-k);1,k-1,2*(n-m-k-1)]^(2*n))[1,1] ) + sum(k=0,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k) * 2^(k-1) * ([0,k,2*(n-m-k-1);2,k-1,2*(n-m-k-1);2,k,2*(n-m-k-2)]^(2*n))[1,1] ) ) } \\ Max Alekseyev, Dec 22 2013

Formula

For n>=2, a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*(2*n-1-k)!*2^k. - Geoffrey Critzer, Feb 09 2014
Recurrence (for n>=4): (2*n-3)*a(n) = 2*(n-1)*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-2)*(n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n-1/2) / exp(2*n+1). - Vaclav Kotesovec, Feb 09 2014
For n>=2, a(n) = (-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2]. - Eric W. Weisstein, Mar 29 2014
a(n) = A003435(n) / (2*n) = A003436(n) * (n-1)! * 2^(n-1). - Andrew Howroyd, May 14 2017

Extensions

Terms a(6) onward from Max Alekseyev, Nov 10 2007
Showing 1-1 of 1 results.