A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0
Keywords
A193668 a(n) = Sum_{i=0..n-1} (n+i)*a(n-1-i) for n>1, a(0)=1, a(1)=1.
1, 1, 5, 24, 134, 866, 6392, 53198, 493628, 5057522, 56741240, 692118422, 9122245508, 129220379978, 1958059133552, 31607140330670, 541515698082332, 9814691158604258, 187629572002767848, 3773371262361852422, 79636835475910932020
Offset: 0
Keywords
Comments
Occurs in making the Q-residue A193657.
Second difference of A002627. - Peter Luschny, May 30 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
a := n -> `if`(n=0,1,(n-n^2-1)*GAMMA(n)+exp(1)*((1-n)*GAMMA(n,1) + n*GAMMA(n+1, 1))): seq(simplify(a(n)),n=0..20); # Peter Luschny, May 30 2014
-
Mathematica
(See A193657.) Flatten[{1,RecurrenceTable[{(n-2)*a[n-2] - (n+2)*a[n-1] + a[n] == 0, a[1]==1, a[2]==5}, a, {n, 20}]}] (* Vaclav Kotesovec, Nov 20 2012 *) CoefficientList[Series[Log[x-1]+E*Gamma[0,1-x]-E*Gamma[0,1]+1-I*Pi+(E^x*x-x^2)/(x-1)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 20 2012 *)
-
PARI
a(n)=if(n<2,1,sum(i=0,n-1,(n+i)*a(n-1-i))) \\ Charles R Greathouse IV, May 30 2014
Formula
Recurrence: a(n) = (n+2)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Nov 20 2012
a(n) ~ n!*n*(e-1). - Vaclav Kotesovec, Nov 20 2012
a(n) = (n-n^2-1)*Gamma(n) + e*(n*Gamma(n+1,1)-(n-1)*Gamma(n,1)) for n>0. - Peter Luschny, May 30 2014.
A345887 Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the largest cell covered.
1, 6, 30, 164, 1030, 7422, 60620, 554248, 5611770, 62353010, 754471432, 9876716940, 139097096918, 2097156230470, 33704296561140, 575219994643472, 10389911153247730, 198019483156015578, 3971390745517868000, 83608226221428800020, 1843561388182505040462
Offset: 1
Keywords
Links
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
Programs
-
Maple
a:= proc(n) a(n):= `if`(n=1, 1, a(n-1)*n^2/(n-1)+n) end: seq(a(n), n=1..21); # Alois P. Heinz, Jun 28 2021
-
Mathematica
With[{r = Range[21]}, r*Rest@ FoldList[Times @@ {##} + 1 &, 0, r]] (* Michael De Vlieger, Jun 28 2021 *)
-
PARI
a(n) = n*sum(k=1, n, n!/k!); \\ Michel Marcus, Jun 29 2021
Formula
a(n) = n * Sum_{k=1..n} n!/k!.
a(n) = n * A002627(n).
From Alois P. Heinz, Jun 28 2021: (Start)
E.g.f.: (exp(x)-x)/(x-1)^2 - exp(x).
a(n) = A193657(n) - 1. (End)
D-finite with recurrence a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2) -2 =0. - R. J. Mathar, Jan 11 2024
Comments
Examples
Crossrefs
Programs
Mathematica
Formula