cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A037452 Let F(x) = 1 + 1*x + 4*x^2 + 10*x^3 + ..., the g.f. for A000293 (solid partitions), and write F(x) = 1/Product_{n>=1} (1 - x^n)^a(n).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 20, 26, 34, 46, 68, 97, 120, 112, 23, -186, -496, -735, -531, 779, 3894, 9323, 16472, 23056, 23850, 10116, -31613, -120720, -283202, -548924, -932162, -1380125, -1655072, -1144651, 1385629, 7943203, 21083967, 42787785, 71816191, 98995196, 100392874, 29623771, -187433150
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2003

Keywords

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jul 30 2003

A305842 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000293 (solid partitions).

Original entry on oeis.org

1, 4, 6, 14, 15, 26, 26, 48, 46, 83, 97, 146, 112, 49, -186, -448, -735, -485, 779, 3977, 9323, 16569, 23056, 23996, 10116, -31501, -120720, -283153, -548924, -932348, -1380125, -1655520, -1144651, 1384894, 7943203, 21083482, 42787785, 71816970, 98995196
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2018

Keywords

Comments

Inverse weigh transform of A000293.

Examples

			(1 + x) * (1 + x^2)^4 * (1 + x^3)^6 * (1 + x^4)^14 * (1 + x^5)^15 * ... * (1 + x^n)^a(n) * ... = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + ... + A000293(k)*x^k + ...
		

Crossrefs

Formula

Product_{n>=1} (1 + x^n)^a(n) = Sum_{k>=0} A000293(k)*x^k.
Showing 1-2 of 2 results.