A193731 Mirror of the triangle A193730.
1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0
Examples
First six rows: 1; 1, 2; 3, 8, 4; 9, 30, 28, 8; 27, 108, 144, 80, 16; 81, 378, 648, 528, 208, 32;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n, k) // T = A193731 if k lt 0 or k gt n then return 0; elif n lt 2 then return k+1; else return 3*T(n-1, k) + 2*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
Mathematica
(* First program *) z = 8; a = 2; b = 1; c = 2; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193731 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
SageMath
def T(n, k): # T = A193731 if (k<0 or k>n): return 0 elif (n<2): return k+1 else: return 3*T(n-1, k) + 2*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
Formula
T(n,k) = A193730(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-3*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = 2*A006234(n+2).
T(n, 2) = 4*A080420(n-2).
T(n, 3) = 8*A080421(n-3).
T(n, 4) = 16*A080422(n-4).
T(n, 5) = 32*A080423(n-5).
T(n, n) = A000079(n).
T(n, n-1) = A130129(n-1).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A153881(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007483(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000012(n). (End)
Comments