A193771 Expansion of 1 / (1 - x - x^3 + x^6) in powers of x.
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 23, 31, 41, 54, 72, 96, 127, 168, 223, 296, 392, 519, 688, 912, 1208, 1600, 2120, 2809, 3721, 4929, 6530, 8651, 11460, 15181, 20111, 26642, 35293, 46753, 61935, 82047, 108689, 143982, 190736, 252672, 334719, 443408, 587391
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 0, -1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^3+x^6))); // G. C. Greubel, Aug 10 2018 -
Mathematica
CoefficientList[Series[1/(1-x-x^3+x^6),{x,0,50}],x] (* or *) LinearRecurrence[ {1,0,1,0,0,-1},{1,1,1,2,3,4},50] (* Harvey P. Dale, Jul 25 2017 *)
-
PARI
{a(n) = if( n<0, n = -n; polcoeff( - x^6 / (1 - x^3 - x^5 + x^6) + x * O(x^n), n), polcoeff( 1 / (1 - x - x^3 + x^6) + x * O(x^n), n))};