cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193771 Expansion of 1 / (1 - x - x^3 + x^6) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 23, 31, 41, 54, 72, 96, 127, 168, 223, 296, 392, 519, 688, 912, 1208, 1600, 2120, 2809, 3721, 4929, 6530, 8651, 11460, 15181, 20111, 26642, 35293, 46753, 61935, 82047, 108689, 143982, 190736, 252672, 334719, 443408, 587391
Offset: 0

Views

Author

Michael Somos, Jan 01 2013

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^3+x^6)));  // G. C. Greubel, Aug 10 2018
  • Mathematica
    CoefficientList[Series[1/(1-x-x^3+x^6),{x,0,50}],x] (* or *) LinearRecurrence[ {1,0,1,0,0,-1},{1,1,1,2,3,4},50] (* Harvey P. Dale, Jul 25 2017 *)
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( - x^6 / (1 - x^3 - x^5 + x^6) + x * O(x^n), n), polcoeff( 1 / (1 - x - x^3 + x^6) + x * O(x^n), n))};
    

Formula

G.f.: 1 / (1 - x - x^3 + x^6) = 1 / (1 - x / (1 - x^2 / (1 + x^2 / (1 - x / (1 + x / (1 + x^2 / (1 - x^2))))))).
a(n) = a(n-1) + a(n-3) - a(n-6) for all n in Z.
Convolution of A008621 and A000931. PSUM transform of A017818.