cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A289761 Maximum length of a perfect Wichmann ruler with n segments.

Original entry on oeis.org

3, 6, 9, 12, 15, 22, 29, 36, 43, 50, 57, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232, 251, 270, 289, 308, 327, 350, 373, 396, 419, 442, 465, 492, 519, 546, 573, 600, 627, 658, 689, 720, 751, 782, 813, 848, 883, 918, 953, 988, 1023, 1062, 1101, 1140, 1179, 1218, 1257, 1300, 1343, 1386, 1429
Offset: 2

Views

Author

Hugo Pfoertner, Jul 12 2017

Keywords

Comments

For definitions see A103294.

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3 + n, {n, 2, 66}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    a(n) = n + (n^2 - (n%6 - 3)^2)/3; \\ Michel Marcus, Jul 14 2017
    
  • Python
    def A289761(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ( n^2 - (mod(n,6)-3)^2 ) / 3 + n.
Conjectures from Colin Barker, Jul 14 2017: (Start)
G.f.: x^2*(3 + 4*x^5 - 3*x^6) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)

A193803 Length of perfect Wichmann rulers.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 29, 36, 43, 46, 50, 57, 64, 68, 71, 79, 90, 101, 108, 112, 123, 134, 138, 145, 153, 156, 168, 175, 183
Offset: 1

Views

Author

Peter Luschny, Oct 22 2011

Keywords

Comments

R is a perfect Wichmann ruler iff R is a perfect ruler (for definition see A103294) and there exist two integers r>=0 and s>=0 such that the type of the difference representation of the ruler is [1*r, r+1, (2r+1)*r, (4r+3)*s, (2r+2)*(r+1), 1*r].

Examples

			[0, 1, 2, 5, 10, 15, 26, 37, 48, 54, 60, 66, 67, 68] is a perfect Wichmann ruler with length 68 of Wichmann type (2,3). By contrast [0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68] is a perfect ruler with length 68 which is not a Wichmann ruler.
		

Crossrefs

A289873 Related to perfect Wichmann rulers: a(n) = ( n^2 - (mod(n, 6) - 3)^2 ) / 3.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 21, 27, 33, 39, 45, 55, 65, 75, 85, 95, 105, 119, 133, 147, 161, 175, 189, 207, 225, 243, 261, 279, 297, 319, 341, 363, 385, 407, 429, 455, 481, 507, 533, 559, 585, 615, 645, 675, 705, 735, 765, 799, 833, 867, 901, 935, 969, 1007, 1045, 1083, 1121, 1159, 1197, 1239, 1281, 1323, 1365
Offset: 2

Views

Author

Hugo Pfoertner, Jul 14 2017

Keywords

Comments

Leading term in length A289761 of longest perfect Wichmann ruler with n segments.

Crossrefs

A014641 is a subsequence.

Programs

  • Maple
    p := (n, x) -> (2*n - 3*(1 + x))*(1 + x):
    a := n -> p(n, 2*floor(n/6)):
    seq(a(n), n = 2..64); # Peter Luschny, Jul 14 2017
  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3, {n, 2, 64}] (* Michael De Vlieger, Jul 14 2017 *)
  • Python
    def A289873(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k-n # Chai Wah Wu, Jun 20 2024

Formula

a(n) = A289761(n) - n.
G.f.: x^2*(1 + x - x^2)*(1 + x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) (conjectured). - Colin Barker, Jul 14 2017
Can be seen as a family of parabolas p_{n}(x) = (2*n - 3*(1 + x))*(1 + x) evaluated at x = 2*floor(n/6). - Peter Luschny, Jul 14 2017
Showing 1-3 of 3 results.