A183152
Irregular triangle read by rows in which row n lists the emergent parts of all partitions of n, or 0 if such parts do not exist.
Original entry on oeis.org
0, 0, 0, 0, 2, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 3, 5, 2, 4, 7, 3, 2, 2, 3, 6, 3, 5, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 4, 7, 3, 6, 5, 3, 5, 2, 4, 7, 3, 2, 2, 3, 6, 3, 5, 9, 4, 3, 3, 2, 2, 2, 2, 5, 4, 8, 4, 3, 7, 6
Offset: 0
If written as a triangle:
0,
0,
0,
0,
2,
3,
2,4,2,3,
3,5,2,4,
2,4,2,3,6,3,2,2,5,4,
3,5,2,4,7,3,2,2,3,6,3,5,
2,4,2,3,6,3,2,2,5,4,8,4,3,2,2,2,2,4,7,3,6,5,
3,5,2,4,7,3,2,2,3,6,3,5,9,4,3,3,2,2,2,2,5,4,8,4,3,7,6
A196931
Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Written as a triangle:
0,
1,
1,2,
1,1,3,
1,1,1,2,4,
1,1,1,1,1,2,5,
1,1,1,1,1,1,1,2,2,3,6
1,1,1,1,1,1,1,1,1,1,1,2,2,3,7,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,8,
...
A196025
Total sum of parts greater than 1 in all the partitions of n except one copy of the smallest part greater than 1 of every partition.
Original entry on oeis.org
0, 0, 0, 2, 5, 16, 30, 63, 108, 189, 298, 483, 720, 1092, 1582, 2297, 3225, 4551, 6244, 8592, 11590, 15622, 20741, 27536, 36066, 47198, 61150, 79077, 101391, 129808, 164934, 209213, 263745, 331807, 415229, 518656, 644719, 799926, 988432, 1218979
Offset: 1
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196039,
A196930,
A196931,
A198381.
A196930
Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n that do not contain 1 as a part, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 5, 2, 2, 3, 6, 2, 2, 3, 7, 2, 2, 2, 2, 3, 4, 8, 2, 2, 2, 2, 3, 3, 4, 9, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 10, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 13
Offset: 1
Written as a triangle:
1,
2,
3,
2,4,
2,5,
2,2,3,6
2,2,3,7,
2,2,2,2,3,4,8,
2,2,2,2,3,3,4,9,
2,2,2,2,2,2,2,3,3,4,5,10,
2,2,2,2,2,2,2,2,3,3,3,4,5,11,
2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6,12,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,6,13,
...
Row n has length A002865(n), n >= 2. The sum of row n is A182708(n), n >= 2. The number of 2's in row n is A002865(n-2), n >= 4. Right border of triangle gives A000027.
-
p:= (f, g)-> zip((x, y)->x+y, f, g, 0):
b:= proc(n, i) option remember; local g, j, r;
if n=0 then [1] elif i<2 then [0]
else r:= b(n, i-1);
for j to n/i do g:= b(n-i*j, i-1);
r:= p(p(r, [0$i, g[1]]), subsop(1=0, g));
od; r
fi
end:
T:= proc(n) local l; l:= b(n$2);
`if`(n=1, 1, seq(i$l[i+1], i=2..nops(l)-1))
end:
seq(T(n), n=1..16); # Alois P. Heinz, May 30 2013
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{ g, j, r}, Which[n == 0, {1}, i<2, {0}, True, r = b[n, i-1]; For[j = 1, j <= n/i, j++, g = b[n-i*j, i-1]; r = p[p[r, Append[Array[0&, i], g // First]], ReplacePart[g, 1 -> 0]]]; r]]; T[n_] := Module[{l}, l = b[n, n]; If[n == 1, {1}, Table[Array[i&, l[[i+1]]], {i, 2, Length[l]-1}] // Flatten]]; Table[T[n], {n, 1, 16}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
A198381
Total number of parts greater than 1 in all partitions of n minus the number of partitions of n into parts each less than n.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 54, 81, 128, 184, 273, 385, 549, 754, 1048, 1412, 1917, 2547, 3392, 4444, 5837, 7556, 9791, 12553, 16086, 20429, 25935, 32665, 41108, 51404, 64190, 79721, 98882, 122043, 150417, 184618, 226239
Offset: 0
Cf.
A000041,
A000065,
A000070,
A006128,
A026905,
A093694,
A096541,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196930,
A196931.
A196039
Total sum of the smallest part of every partition of every shell of n.
Original entry on oeis.org
0, 1, 4, 9, 18, 30, 50, 75, 113, 162, 231, 318, 441, 593, 798, 1058, 1399, 1824, 2379, 3066, 3948, 5042, 6422, 8124, 10264, 12884, 16138, 20120, 25027, 30994, 38312, 47168, 57955, 70974, 86733, 105676, 128516, 155850, 188644, 227783, 274541
Offset: 0
For n = 5 the seven partitions of 5 are:
5
3 + 2
4 + 1
2 + 2 + 1
3 + 1 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
.
The five shells of 5 (see A135010 and also A138121), written as a triangle, are:
1
2, 1
3, 1, 1
4, (2, 2), 1, 1, 1
5, (3, 2), 1, 1, 1, 1, 1
.
The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have:
1
2, 1
3, 1, 1
4, 2, 1, 1, 1
5, 2, 1, 1, 1, 1, 1
.
thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196025,
A196930,
A196931,
A198381,
A206437.
-
b:= proc(n, i) option remember;
`if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(nAlois P. Heinz, Apr 03 2012
-
b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
A220483
Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 11, 19, 26, 34, 51, 67, 91, 118, 158, 200, 271, 331, 433, 538, 699, 849, 1089, 1323, 1674, 2030, 2542, 3066, 3813, 4567, 5640, 6760, 8272, 9871, 12002, 14290, 17287, 20515, 24675, 29214, 34981, 41282, 49216, 57957, 68798
Offset: 1
Cf.
A000005,
A000041,
A000070,
A000203,
A002865,
A092269,
A182699,
A182709,
A183152,
A193827,
A195820,
A206437,
A215513,
A220479,
A220489.
-
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
Showing 1-7 of 7 results.
Comments