cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193828 Even generalized pentagonal numbers.

Original entry on oeis.org

0, 2, 12, 22, 26, 40, 70, 92, 100, 126, 176, 210, 222, 260, 330, 376, 392, 442, 532, 590, 610, 672, 782, 852, 876, 950, 1080, 1162, 1190, 1276, 1426, 1520, 1552, 1650, 1820, 1926, 1962, 2072, 2262, 2380, 2420, 2542, 2752, 2882, 2926, 3060, 3290, 3432, 3480
Offset: 0

Views

Author

Omar E. Pol, Aug 19 2011

Keywords

Comments

Even numbers in A001318.
Exponents in the expansion of Sum_{n >= 0} q^(2*n)/(Product_{k = 1..2*n} 1 + q^(2*k)) = 1 + q^2 - q^12 - q^22 + q^26 + q^40 - - + + ... (follows from Berndt et al., Theorem 3.3). Cf. A067589. - Peter Bala, Jan 21 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2*x*(x^2 - x + 1)*(x^2 + 4*x + 1)/((x - 1)^3*(x^2 + 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 06 2017 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,2,12,22,26,40,70},50] (* Harvey P. Dale, Apr 09 2019 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2))) \\ G. C. Greubel, Jun 06 2017

Formula

a(n) = A000217(A108752(n+1))/3 = 2*A154293(n+1).
G.f.: -2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2). - Colin Barker, Sep 12 2012
Sum_{n>=1} 1/a(n) = 6 - (1+4/sqrt(3))*Pi/2. - Amiram Eldar, Mar 18 2022