A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)
1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0
Examples
First six rows, for 0 <= k <= n and 0 <= n <= 5: 1 1...4 1...7....13 1...10...34....40 1...13...64....142...121 1...16...103...334...547...364
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Digital Library of Mathematical Functions, Hypergeometric function, analytic properties.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52(3) (2014), 195-202.
Programs
-
Magma
[ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
Maple
fission := proc(p, q, n) local d, k; p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n); seq(coeff(%,x,n-k), k=0..n) end: A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n); for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014 # Alternatively: p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
-
Mathematica
(* First program *) z = 10; p[n_, x_] := (x + 1)^n; q[n_, x_] := (x + 2)^n p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *) TableForm[Table[h[n], {n, 0, z}]] (* A193843 *) Flatten[Table[h[n], {n, -1, z}]] (* Second program *) Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
-
PARI
T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
-
Sage
from mpmath import mp, hyp2f1 mp.dps = 100; mp.pretty = True def T(n,k): return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2 for n in range(7): print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
-
Sage
# Second program using the 'fission' operation. def fission(p, q, n): F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n)) return [expand(F).coefficient(x,n-k) for k in (0..n)] A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k) for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
Formula
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014
Extensions
Name and Comments edited by Petros Hadjicostas, Jun 05 2020
Comments