cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)

Original entry on oeis.org

1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:
...
q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),
...
for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by
...
D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)
...
Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).
...
Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by
...
q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)
0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)
0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)
...
0 ....... 0.................. q(1,0) ...... q(1,1)
0 ....... 0 ................. 0 ........... q(0,0).
Here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);
i.e., "q" is used instead of "t".
...
Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then
...
w(0,x) = 1 by the definition of W,
w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,
w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,
w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.
...
From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:
1
1...4
1...7....13
1...10...34...40
...
In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.
...
..P........Q...........P^^Q........r(P^^Q)
(x+1)^n....(x+2)^n.....A193842.....A193843
(x+1)^n....(x+1)^n.....A193844.....A193845
(x+2)^n....(x+1)^n.....A193846.....A193847
(2x+1)^n...(x+1)^n.....A193856.....A193857
(x+1)^n....(2x+1)^n....A193858.....A193859
(x+1)^n.......u........A054143.....A104709
..u........(x+1)^n.....A074909.....A074909
..u...........u........A002260.....A004736
(x+2)^n.......u........A193850.....A193851
..u.........(x+2)^n....A193844.....A193845
(2x+1)^n......u........A193860.....A193861
..u.........(2x+1)^n...A115068.....A193862
...
Regarding A193842,
col 1 ...... A000012
col 2 ...... A016777
col 3 ...... A081271
w(n,n) ..... A003462
w(n,n-1) ... A014915

Examples

			First six rows, for 0 <= k <= n and 0 <= n <= 5:
  1
  1...4
  1...7....13
  1...10...34....40
  1...13...64....142...121
  1...16...103...334...547...364
		

Crossrefs

Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).

Programs

  • Magma
    [ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    fission := proc(p, q, n) local d, k;
    p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);
    seq(coeff(%,x,n-k), k=0..n) end:
    A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);
    for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
    # Alternatively:
    p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
  • Mathematica
    (* First program *)
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (x + 2)^n
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193842 *)
    TableForm[Table[h[n], {n, 0, z}]]  (* A193843 *)
    Flatten[Table[h[n], {n, -1, z}]]
    (* Second program *)
    Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    from mpmath import mp, hyp2f1
    mp.dps = 100; mp.pretty = True
    def T(n,k):
        return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2
    for n in range(7):
        print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
    
  • Sage
    # Second program using the 'fission' operation.
    def fission(p, q, n):
        F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))
        return [expand(F).coefficient(x,n-k) for k in (0..n)]
    A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
    

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014

Extensions

Name and Comments edited by Petros Hadjicostas, Jun 05 2020

A193844 Triangular array: the fission of ((x+1)^n) by ((x+1)^n); i.e., the self-fission of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 17, 15, 1, 9, 31, 49, 31, 1, 11, 49, 111, 129, 63, 1, 13, 71, 209, 351, 321, 127, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
A193844 is also the fission of (p1(n,x)) by (q1(n,x)), where p1(n,x)=x^n+x^(n-1)+...+x+1 and q1(n,x)=(x+2)^n.
Essentially A119258 but without the main diagonal. - Peter Bala, Jul 16 2013
From Robert Coquereaux, Oct 02 2014: (Start)
This is also a rectangular array A(n,p) read down the antidiagonals:
1 1 1 1 1 1 1 1 1
3 5 7 9 11 13 15 17 19
7 17 31 49 71 97 127 161 199
15 49 111 209 351 545 799 1121 1519
31 129 351 769 1471 2561 4159 6401 9439
...
Calling Gr(n) the Grassmann algebra with n generators, A(n,p) is the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence. If p is odd A(n,p) is the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n). If p is even, the dimension of this cohomology group is A(n,p)+1. A(n,p) = 2^n*A059260(p,n-1)-(-1)^p.
(End)
The n-th row are also the coefficients of the polynomial P=sum_{k=0..n} (X+2)^k (in falling order, i.e., that of X^n first). - M. F. Hasler, Oct 15 2014

Examples

			First six rows:
1
1....3
1....5....7
1....7....17....15
1....9....31....49....31
1....11...49....111...129...63
		

Crossrefs

A145661 is an essentially identical triangle.

Programs

  • Maple
    A193844 := (n,k) -> 2^k*binomial(n+1,k)*hypergeom([1,-k],[-k+n+2],1/2);
    for n from 0 to 5 do seq(round(evalf(A193844(n,k))),k=0..n) od; # Peter Luschny, Jul 23 2014
    # Alternatively
    p := (n,x) -> add(x^k*(1+2*x)^(n-k), k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
  • Mathematica
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (x + 1)^n
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193844 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* A193845 *)
  • Sage
    # uses[fission from A193842]
    p = lambda n,x: (x+1)^n
    A193844_row = lambda n: fission(p, p, n)
    for n in range(7): print(A193844_row(n)) # Peter Luschny, Jul 23 2014

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = sum {i = 0..k} (-1)^i*binomial(n+1,k-i)*2^(k-i).
O.g.f.: 1/( (1 - x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 3*x)*t + (1 + 5*x + 7*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(x+1)*( (2*x+1)^(n+1) - x^(n+1) ). (End)
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 17 2014
T(n,k) = 2^k*binomial(n+1,k)*hyper2F1(1,-k,-k+n+2, 1/2). - Peter Luschny, Jul 23 2014

A248810 Signed version of A164984.

Original entry on oeis.org

1, -1, 1, 3, -3, 1, -5, 9, -5, 1, 11, -23, 19, -7, 1, -21, 57, -61, 33, -9, 1, 43, -135, 179, -127, 51, -11, 1, -85, 313, -493, 433, -229, 73, -13, 1, 171, -711, 1299, -1359, 891, -375, 99, -15, 1, -341, 1593, -3309, 4017, -3141, 1641, -573, 129, -17, 1, 683, -3527, 8211, -11343, 10299, -6423, 2787, -831, 163, -19, 1
Offset: 0

Views

Author

Derek Orr, Oct 14 2014

Keywords

Comments

Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+2)^0 + A_1*(x+2)^1 + A_2*(x+2)^2 + ... + A_n*(x+2)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			1;
-1,      1;
3,      -3,     1;
-5,      9,    -5,      1;
11,    -23,    19,     -7,     1;
-21,    57,   -61,     33,    -9,     1;
43,   -135,   179,   -127,    51,   -11,    1;
-85,   313,  -493,    433,  -229,    73,  -13,    1;
171,  -711,  1299,  -1359,   891,  -375,   99,  -15,   1;
-341, 1593, -3309,   4017, -3141,  1641, -573,  129, -17,   1;
683, -3527,  8211, -11343, 10299, -6423, 2787, -831, 163, -19, 1;
		

Crossrefs

Programs

  • PARI
    for(n=0,20,for(k=0,n,print1(1/k!*sum(i=0,n,((-2)^(i-k)*prod(j=0,k-1,i-j))),", ")))

Formula

T(n,n-1) = -2*n+1 for n > 0.
T(n,n-2) = 2*(n-1)^2+1 for n > 1.
T(n,0) = A077925(n).
T(n,1) = (-1)^(n+1)*A045883(n).
Rows with odd n sum to 0.
Rows with even n sum to 1.
Showing 1-3 of 3 results.