A193999 Mirror of the triangle A094585.
1, 3, 2, 6, 5, 3, 11, 10, 8, 5, 19, 18, 16, 13, 8, 32, 31, 29, 26, 21, 13, 53, 52, 50, 47, 42, 34, 21, 87, 86, 84, 81, 76, 68, 55, 34, 142, 141, 139, 136, 131, 123, 110, 89, 55, 231, 230, 228, 225, 220, 212, 199, 178, 144, 89, 375, 374, 372, 369, 364, 356, 343
Offset: 1
Keywords
Examples
First six rows: 1; 3, 2; 6, 5, 3; 11, 10, 8, 5; 19, 18, 16, 13, 8; 32, 31, 29, 26, 21, 13;
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..11325
Crossrefs
Cf. A094585.
Programs
-
GAP
Flat(List([1..11],n->Reversed(List([1..n],k->Fibonacci(n+3)-Fibonacci(n-k+3))))); # Muniru A Asiru, Apr 28 2019
-
Mathematica
z = 11; p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; q[n_, x_] := x*q[n - 1, x] + 1; q[0, n_] := 1; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A094585 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193999 *) (* alternate program *) Table[Fibonacci[n+3]-Fibonacci[k+2], {n,1,10}, {k,1,n}] //TableForm (* Rigoberto Florez, Oct 03 2019 *)
Formula
T(n,k) = Fibonacci(n+3) - Fibonacci(k+2) for n > 0 and 1 <= k <= n. - Rigoberto Florez, Oct 03 2019
G.f.: x*y*(x*y+x+1)/((1-x)*(x^2+x-1)*(x^2*y^2+x*y-1)). - Vladimir Kruchinin, Jun 20 2025
Extensions
Offset 1 from Muniru A Asiru, Apr 29 2019
Comments