A358704 Numbers m such that the sum of the prime divisors and the sum of the nonprime divisors of m^2+1 are both prime.
3, 9, 172, 309, 327, 392, 473, 483, 557, 578, 633, 657, 693, 699, 747, 767, 819, 820, 829, 909, 911, 1007, 1013, 1028, 1030, 1057, 1084, 1141, 1157, 1186, 1252, 1308, 1311, 1382, 1577, 1585, 1620, 1682, 1721, 1722, 1727, 1749, 1841, 1849, 1874, 1972, 2019, 2134
Offset: 1
Keywords
Examples
3 is in the sequence because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10} and 1 + 10 = 11 and 2 + 5 = 7 are prime numbers.
Programs
-
Mathematica
f[n_]:=Plus@@Select[Divisors[n^2+1], !PrimeQ[#]&]; g[n_]:=Plus@@First/@FactorInteger[n^2+1]; Select[Range[2200], PrimeQ[f[#]&&PrimeQ[g[#]]]&]
-
PARI
isok(m) = my(f=factor(m^2+1), sp=vecsum(f[, 1])); isprime(sp) && isprime(sigma(f)-sp); \\ Michel Marcus, Nov 28 2022
Comments