cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194113 a(n) = Sum_{j=1..n} floor(j*sqrt(10)); n-th partial sum of Beatty sequence for sqrt(10).

Original entry on oeis.org

3, 9, 18, 30, 45, 63, 85, 110, 138, 169, 203, 240, 281, 325, 372, 422, 475, 531, 591, 654, 720, 789, 861, 936, 1015, 1097, 1182, 1270, 1361, 1455, 1553, 1654, 1758, 1865, 1975, 2088, 2205, 2325, 2448, 2574, 2703, 2835, 2970, 3109, 3251, 3396, 3544
Offset: 1

Views

Author

Clark Kimberling, Aug 16 2011

Keywords

Comments

From Marius A. Burtea, Aug 22 2018: (Start)
a(2) = 9 = 3^2;
a(10) = 169 = 13^2;
a(76) = 9216 = 96^2;
a(783) = 970225 = 985^2;
a(5895) = 54952569 = 7413^2;
a(187507) = 55591265284 = 235778^2;
a(577771) = 527815327081 = 726509^2;
...
Does the sequence include an infinite number of perfect squares? (End)

Crossrefs

Cf. A177102 (Beatty sequence for sqrt(10)).

Programs

  • Mathematica
    Table[Sum[Floor[j*Sqrt[10]], {j, 1, n}], {n, 1, 90}]
  • PARI
    for(n=1,50, print1(sum(k=1,n, floor(k*sqrt(10))), ", ")) \\ G. C. Greubel, Sep 24 2017
    
  • Python
    from math import isqrt
    def A194113(n): return sum(isqrt(10*j**2) for j in range(1,n+1)) # Chai Wah Wu, Jul 23 2024