A194113 a(n) = Sum_{j=1..n} floor(j*sqrt(10)); n-th partial sum of Beatty sequence for sqrt(10).
3, 9, 18, 30, 45, 63, 85, 110, 138, 169, 203, 240, 281, 325, 372, 422, 475, 531, 591, 654, 720, 789, 861, 936, 1015, 1097, 1182, 1270, 1361, 1455, 1553, 1654, 1758, 1865, 1975, 2088, 2205, 2325, 2448, 2574, 2703, 2835, 2970, 3109, 3251, 3396, 3544
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A177102 (Beatty sequence for sqrt(10)).
Programs
-
Mathematica
Table[Sum[Floor[j*Sqrt[10]], {j, 1, n}], {n, 1, 90}]
-
PARI
for(n=1,50, print1(sum(k=1,n, floor(k*sqrt(10))), ", ")) \\ G. C. Greubel, Sep 24 2017
-
Python
from math import isqrt def A194113(n): return sum(isqrt(10*j**2) for j in range(1,n+1)) # Chai Wah Wu, Jul 23 2024
Comments