cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194229 Partial sums of A057357.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 15, 19, 23, 28, 33, 39, 45, 51, 58, 65, 73, 81, 90, 99, 108, 118, 128, 139, 150, 162, 174, 186, 199, 212, 226, 240, 255, 270, 285, 301, 317, 334, 351, 369, 387, 405, 424, 443, 463, 483, 504, 525, 546, 568, 590, 613, 636, 660, 684, 708
Offset: 1

Views

Author

Clark Kimberling, Aug 19 2011

Keywords

Examples

			G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + ... - _Michael Somos_, Sep 13 2023
		

Crossrefs

Cf. A057357.

Programs

  • Mathematica
    r = 3/7;
    a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
    Table[a[n], {n, 1, 90}]    (* A057357 *)
    s[n_] := Sum[a[k], {k, 1, n}]
    Table[s[n], {n, 1, 100}]   (* A194229 *)
    Table[Sum[Floor[3*k/7], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Nov 03 2017 *)
    a[ n_] := Floor[(n^2 + n)*3/14]; (* Michael Somos, Sep 13 2023 *)
  • PARI
    concat(0, Vec(x^2*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x+x^2+x^3+x^4 +x^5+x^6)) + O(x^100))) \\ Colin Barker, Jan 09 2016
    
  • PARI
    a(n) = sum(k=1, n, 3*k\7); \\ Michel Marcus, Nov 03 2017
    
  • PARI
    {a(n) = (n^2+n)*3\14}; /* Michael Somos, Sep 13 2023 */

Formula

G.f.: x^2*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, Jan 09 2016
G.f.: x^2*(1-x^6) / ((1-x)^2*(1-x^2)*(1-x^7)). - Michael Somos, Sep 13 2023