cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194231 Numbers k such that at least one of k and k+2 is composite, while for every b coprime to k*(k+2), b^(k-1) == 1 (mod k) and b^(k+1) == 1 (mod k+2).

Original entry on oeis.org

561, 1103, 2465, 2819, 6599, 29339, 41039, 52631, 62743, 172079, 188459, 278543, 340559, 488879, 656599, 656601, 670031, 1033667, 1909001, 2100899, 3146219, 5048999, 6049679, 8719307, 10024559, 10402559, 10877579, 11119103, 12261059, 14913989, 15247619
Offset: 1

Views

Author

Vladimir Shevelev, Oct 12 2011

Keywords

Comments

These might be called "Carmichael pseudo-twin-primes".

Crossrefs

Subsequences: A272754, A290692.

Programs

  • Maple
    with(numtheory):
    ic:= proc(n) local p;
           if not issqrfree(n) then false
         else for p in factorset(n) do
                if irem (n-1, p-1)<>0 then return false fi
              od; true
           fi
         end:
    a:= proc(n) option remember; local k;
          for k from 2 +`if`(n=1, 1, a(n-1)) by 2 while
            isprime(k) and isprime(k+2) or not (ic(k) and ic(k+2))
          do od; k
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, Oct 12 2011
  • Mathematica
    terms = 31; bMax = 20(* sufficient for 31 terms *); coprimes[n_] := Select[ Range[bMax], CoprimeQ[#, n]&]; Reap[For[n = m = 1, m <= terms, n += 2, If[CompositeQ[n] || CompositeQ[n+2], If[AllTrue[coprimes[n(n+2)], PowerMod[#, n-1, n] == 1 && PowerMod[#, n+1, n+2] == 1&], Print["a(", m, ") = ", n]; Sow[n]; m++]]]][[2, 1]] (* Jean-François Alcover, Mar 28 2017 *)

Formula

For every b coprime to a(n)*(a(n)+2), 2*b^(a(n)+1) == (b^2-1)*(a(n)+2) (mod a(n)*(a(n)+2)). Conversely (Max Alekseyev), if for every b coprime to N*(N+2), 2*b^(N+1) == (b^2-1)*(N+2) (mod N*(N+2)), then N is in the sequence. - Vladimir Shevelev, Oct 14 2011