A194452 Total number of repeated parts in all partitions of n.
0, 0, 2, 3, 8, 12, 24, 35, 60, 87, 136, 192, 287, 396, 567, 773, 1074, 1439, 1958, 2587, 3454, 4514, 5931, 7666, 9951, 12736, 16341, 20743, 26354, 33184, 41807, 52262, 65329, 81144, 100721, 124344, 153390, 188303, 230940, 282063, 344100, 418242, 507762
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Number of Partitions repeated parts -------------------------------------- 6 .......................... 0 3 + 3 ...................... 2 4 + 2 ...................... 0 2 + 2 + 2 .................. 3 5 + 1 ...................... 0 3 + 2 + 1 .................. 0 4 + 1 + 1 .................. 2 2 + 2 + 1 + 1 .............. 4 3 + 1 + 1 + 1 .............. 3 2 + 1 + 1 + 1 + 1 .......... 4 1 + 1 + 1 + 1 + 1 + 1 ...... 6 ------------------------------------ Total ..................... 24 So a(6) = 24.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; local h, j, t; if n<0 then [0, 0] elif n=0 then [1, 0] elif i<1 then [0, 0] else h:= [0, 0]; for j from 0 to iquo(n, i) do t:= b(n-i*j, i-1); h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*j)] od; h fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011 g := add(x^(2*j)*(2-x^j)/(1-x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 02 2016
-
Mathematica
myCount[p_List] := Module[{t}, If[p == {}, 0, t = Transpose[Tally[p]][[2]]; Sum[If[t[[i]] == 1, 0, t[[i]]], {i, Length[t]}]]]; Table[Total[Table[myCount[p], {p, IntegerPartitions[i]}]], {i, 0, 20}] (* T. D. Noe, Nov 19 2011 *) b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h={0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]]+t[[1]], h[[2]]+t[[2]] + If[j<2, 0, t[[1]]*j]}]; h] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *) Table[Length[Flatten[Select[Flatten[Split[#]&/@IntegerPartitions[n],1],Length[#]>1&]]],{n,0,60}] (* Harvey P. Dale, Jun 12 2024 *)
Formula
a(n) = Sum_{k=2..n} k*A264405(n,k). - Alois P. Heinz, Dec 07 2015
G.f.: g = Sum_{j>0} (x^{2*j}*(2 - x^j)/(1-x^j))/Product_{k>0}(1 - x^k) (obtained by logarithmic differentiation of the bivariate g.f. given in A264405). - Emeric Deutsch, Feb 02 2016